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Although neuraxial techniques, such as spinal and epidural, are still considered as

the gold standard for labor analgesia, there are some parturients who cannot receive

neuraxial analgesia because of pre-existing conditions, or who request analgesia other

than epidural block. An alternative analgesia is remifentanil, which is a relatively

new, very potent and short-acting opioid. It has been shown to be effective in the

relief of labor pain, but reports to date have failed to find the optimal dosing regimen.

A challenge to a systemic opioid is that it must match the unique time course of labor

pain. A continuous infusion is not ideal, as the parturient experiences no pain between

contractions. Moreover, a continuous infusion during times in which the patient does

not experience pain, may increase the risks of respiratory depression, sedation and

nausea. The continuous infusion also increases the amount of the drug to which the

fetus is exposed.

Designing an optimal dosing regimen necessitates the prediction of the pace of

contractions, so that the drug can be given shortly before the pain of the contraction

begins. The prediction and thus drug administration should be made early enough to

allow for the administration of intravenous analgesia that will have maximal efficacy

during contractions, little effect between contractions, and minimal impact on the

fetus. Towards such a need, we propose a knowledge-assisted sequential pattern
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analysis framework to predict the changes in intrauterine pressure, which indicate

the occurrence of labor contractions. The proposed framework predicts in real time

and provides a prediction multiple seconds before a contraction occurs, so as to assist

in designing optimal administration strategies of remifentanil in labor.

The proposed framework first selects a group of patients, from the stored record,

who share similar demographic and obstetrical information with the current patient

of interest. Second, it develops a sequential association rule mining approach to learn

the patterns of the contractions from the historical patient tracings of the selected

patients. Third, a sequential association rule-based collaborative filtering strategy is

designed to dynamically select a training dataset from the historical patient tracings,

as well as from the most recent training time series of the patient of interest. The

training set is used for training a set of prediction models. A k-nearest neighbors (k-

NN) based least squares support vector machine (LS-SVM) approach with heuristic

parameter tuning is proposed to conduct the long-term time series prediction. A

post-prediction process is also incorporated to further enhance the prediction results.

Because to the best of our knowledge, there has been no previous study to predict

future contractions, this work can be considered as a pioneer in the field.

We evaluate the performance of the proposed framework using actual data from

anonymous patients with varied contraction patterns. The data include patient demo-

graphic and obstetrical information, and measured intrauterine pressure time series.

Overall, the proposed framework outperforms several well-known prediction meth-

ods, and it accomplishes that in real time. Meanwhile, experiments that compare

each component with some other famous algorithms are conducted. The promising

experimental results show that all proposed components improve the prediction preci-
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sion, and the proposed framework achieves the effectiveness, robustness and efficiency

that are needed for designing the optimal dosing regimen of remifentanil.



www.manaraa.com

To my beloved parents

iii



www.manaraa.com

Acknowledgment

I would like to acknowledge and extend my heartfelt gratitude to my dissertation

co-advisors, Dr. Mei-Ling Shyu, Dr. James M. Tien, and Dr. David J. Birnbach,

for their guidance and support throughout this work. I am especially thankful to Dr.

Mei-Ling Shyu, a devoted researcher and mentor, for providing a stimulating research

environment, for giving me constructive advice during the academic program, and for

always encouraging me to reach higher grounds in research. I am very grateful to

Dr. James M. Tien and Dr. David J. Birnbach, who invested a significant amount of

time to provide me with valuable guidance and detailed feedback, which have helped

me achieve additional insights into my dissertation topic and have given me new

perspectives on research.

I would also like to thank my dissertation committee members, Dr. Mohamed

Abdel-Mottaleb and Dr. Xiaodong Cai, for valuable input and support. Their feed-

back was important for improving the quality of this work. I am very grateful to Dr.

Mei-Ling Shyu, the Department of Electrical and Computer Engineering, and Dr.

James M. Tien for the financial support during the Ph.D. program. Special thanks

go to the staff in the Department of Electrical and Computer Engineering, Michelle

R. Perez, Rosamund Coutts, and Angie Del-Llano, for their kindness and willingness

to help with both administrative and personal issues.

iv



www.manaraa.com

My gratitude goes to the lovely friends I met at the University of Miami for

their priceless friendship, which makes this journey easier and more meaningful. In

particular, I would like to thank all the members in the Data Mining, Database and

Multimedia Research Group at the University of Miami for their help, consideration,

and encouragement. A very special recognition needs to be given to Dr. Michael M.

Vigoda for his extensive help and support in communicating with the technicians in

GE Company and Jackson Memorial Hospital, which made the experiments on real

patient data possible. I would like to extend my sincere gratitude to Mike Jordan,

Dr. Jayanthie S. Ranasinghe, Juan A. Mesa, and Jean Heichman for their help

and assistance in extracting and retrieving labor monitoring data, without which the

experimental validation of the proposed framework in this dissertation would not be

possible.

Finally, I dedicate this dissertation to my beloved parents for their unconditional

love and support in every way possible throughout the Ph.D. program, this disserta-

tion and beyond.

ZIFANG HUANG

University of Miami

May 2012

v



www.manaraa.com

Table of Contents

LIST OF FIGURES ix

LIST OF TABLES xii

1 INTRODUCTION 1

1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . 16

2 LITERATURE REVIEW 18

2.1 Coordination of Uterine Contractions . . . . . . . . . . . . . . . . . . 18

2.2 Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Knowledge Discovery and Data Mining . . . . . . . . . . . . . . . . . 25

2.3.1 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Temporal Pattern Analysis . . . . . . . . . . . . . . . . . . . . 30

3 OVERVIEW OF THE PROPOSED FRAMEWORK 32

vi



www.manaraa.com

3.1 Structure of the Proposed Framework . . . . . . . . . . . . . . . . . . 32

3.2 Inputs to the Framework . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Peak Point Detection . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Related Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Long-Term Time Series Prediction . . . . . . . . . . . . . . . 40

3.3.2 LS-SVM for Regression . . . . . . . . . . . . . . . . . . . . . . 42

3.4 k-NN Based LS-SVM Method . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Post-Prediction Process . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Boundary Constraint Component . . . . . . . . . . . . . . . . 51

3.5.2 Multi-Value Integration Component . . . . . . . . . . . . . . . 53

3.5.3 Vertical Correction Component . . . . . . . . . . . . . . . . . 56

3.6 Framework Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . 57

4 PATIENT SELECTION AND COLLABORATIVE TRAINING DATASET

SELECTION 60

4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Sequential Association Rule Mining Algorithm . . . . . . . . . . . . . 62

4.3 Patient Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Collaborative Training Dataset Selection . . . . . . . . . . . . . . . . 72

5 HEURISTIC PARAMETER TUNING FOR LS-SVM 77

vii



www.manaraa.com

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Selection of the Kernel Parameter σ . . . . . . . . . . . . . . . . . . . 80

5.3 Selection of the Regularization Factor γ . . . . . . . . . . . . . . . . . 82

5.4 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Datasets and Error Measurement . . . . . . . . . . . . . . . . 89

5.5.2 Experimental Results and Analysis . . . . . . . . . . . . . . . 91

6 FRAMEWORK EVALUATION 104

6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 CONCLUSION AND FUTURE WORK 118

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX A GAMMA TEST 132

APPENDIX B GLOSSARY 134

Bibliography 137

viii



www.manaraa.com

List of Figures

1.1 Typical Uterine EMG Setup (OB-Tools 2011) . . . . . . . . . . . . . 4

1.2 Tocodynamometer Setup (Palomar Pomerado Health 2011) . . . . . . 5

1.3 Flowchart of the Proposed Framework . . . . . . . . . . . . . . . . . 10

2.1 An Overview of the Steps That Compose the KDD Process (Fayyad,

Piatetsky-shapiro, and Smyth 1996) . . . . . . . . . . . . . . . . . . . 26

3.1 System Architecture of the Proposed Framework . . . . . . . . . . . . 33

3.2 Intrauterine Pressure Catheter (Palomar Pomerado Health 2011) . . . 35

3.3 Intrauterine Pressure Time Series . . . . . . . . . . . . . . . . . . . . 35

3.4 Data Preprocessing Step . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Slopes for Shape-Preserving Hermite Interpolation . . . . . . . . . . . 39

3.6 k-NN Based LS-SVM Long-Term Time Series Prediction . . . . . . . 46

3.7 Post-Prediction Process . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 A Tree for Patient Selection . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Patient Selection Component . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Collaborative Training Dataset Selection Component . . . . . . . . . 73

ix



www.manaraa.com

5.1 Heuristic Parameter Tuning for LS-SVM . . . . . . . . . . . . . . . . 78

5.2 RBF Kernel Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Pseudo-Code for Heuristic Parameter Tuning . . . . . . . . . . . . . . 85

5.4 Framework for Testing the Heuristic Parameter Tuning Component . 89

5.5 A segment of the NNGC1 time series . . . . . . . . . . . . . . . . . . 90

5.6 A segment of the chaotic laser time series . . . . . . . . . . . . . . . . 91

5.7 A segment of the sunspot area data time series . . . . . . . . . . . . . 92

5.8 Prediction Results for NNGC1 Time Series . . . . . . . . . . . . . . . 95

5.9 Prediction Errors for NNGC1 Time Series . . . . . . . . . . . . . . . 96

5.10 Prediction Results for Chaotic Laser Time Series . . . . . . . . . . . . 97

5.11 Prediction Results for Chaotic Laser Time Series . . . . . . . . . . . . 98

5.12 Prediction Errors for Chaotic Laser Time Series . . . . . . . . . . . . 99

5.13 Prediction Results for Sunspot Area Data Time Series . . . . . . . . . 100

5.14 Prediction Errors for Sunspot Area Data Time Series . . . . . . . . . 101

5.15 Prediction Error for a Fixed σ2 with Different γ for NNGC1 Time Series102

5.16 Prediction Error for a Fixed σ2 with Different γ for Chaotic Laser Time

Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.17 Prediction Error for a Fixed σ2 with Different γ for Sunspot Area Data

Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Prediction Results for Patient 1 (Accuracy = 0.92) . . . . . . . . . . 111

6.2 Prediction Results for Patient 2 (Accuracy = 0.91) . . . . . . . . . . 112

6.3 Prediction Results for Patient 3 (Accuracy = 0.83) . . . . . . . . . . 113

6.4 Prediction Results for Patient 4 (Accuracy = 0.83) . . . . . . . . . . 113

x



www.manaraa.com

6.5 Prediction Results for Patient 5 (Accuracy = 0.86) . . . . . . . . . . 114

6.6 Prediction Results for Patient 6 (Accuracy = 0.78) . . . . . . . . . . 114

6.7 Prediction Results for Patient 7 (Accuracy = 0.80) . . . . . . . . . . 115

6.8 Prediction Results for Patient 8 (Accuracy = 0.86) . . . . . . . . . . 115

6.9 Prediction Results for Patient 9 (Accuracy = 0.95) . . . . . . . . . . 116

6.10 Prediction Results for Patient 10 (Accuracy = 0.76) . . . . . . . . . . 116

6.11 Prediction Results for Patient 11 (Accuracy = 0.7) . . . . . . . . . . 117

7.1 Systematic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 A Tree for Patient Selection . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Frequency Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



www.manaraa.com

List of Tables

3.1 An Example for Instance Selection . . . . . . . . . . . . . . . . . . . 50

3.2 An Example for Multi-Value Integration Component . . . . . . . . . 54

3.3 Weight Distance Mapping Table . . . . . . . . . . . . . . . . . . . . . 59

4.1 Discretization Mapping Table for Height . . . . . . . . . . . . . . . . 61

4.2 Discretization Mapping Table for Period . . . . . . . . . . . . . . . . 61

4.3 An Example for Constructing Training Dataset . . . . . . . . . . . . 75

5.1 Descriptive Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Prediction Results for NNGC1 Time Series . . . . . . . . . . . . . . . 94

5.3 Prediction Results for Chaotic Laser Time Series . . . . . . . . . . . . 96

5.4 Prediction Results for Sunspot Area Data Time Series . . . . . . . . . 98

5.5 Time Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Patient Demographic and Obstetrical Information for Testing . . . . 106

6.2 Experimental Results in Terms of Root Mean Squared Error . . . . . 108

6.3 Experimental Results in Terms of Symmetric Mean Absolute Percent-

age Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Experimental Results in Terms of the FIT Measure . . . . . . . . . . 110

xii



www.manaraa.com

7.1 The Indication of Oxytocin Record for One Patient . . . . . . . . . . 126

xiii



www.manaraa.com

CHAPTER 1

Introduction

In the United States today, pregnant women predominantly choose neuraxial blockade

(epidural and combined spinal epidural) for the management of labor pain. Although

neuraxial techniques are considered the gold standard for labor analgesia, some women

cannot receive the neuraxial analgesia because of pre-existing conditions or preference

for analgesias other than an epidural block. In some parts of the world, anesthesiolo-

gists are not trained to administer neuraxial blocks; in addition, the lack of analgesic

efficacy and side effects of traditional opioids (morphine, meperidine, fentanyl) to

treat labor pain has necessitated the search for an alternative approach.

One alternative is the accurately timed delivery of remifentanil. Remifentanil is a

relatively new, very potent, short-acting µ-opioid agonist, which is chemically related

to fentanyl (Evron, Glezerman, Sadan, Boaz, and Ezri 2005). Its major advantages

over other opioids include rapid onset of action and rapid clearance rate by red blood

cells and tissue esterase to an inactive metabolite (Evron, Glezerman, Sadan, Boaz,

and Ezri 2005). Consequently, prolonged administration does not cause accumulation

of the drug and has minimal effects on the neonate. Remifentanil can be used either

1
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as a continuous infusion or as boluses, and has been shown to be effective in the relief

of labor pain (Volmanen, Akural, Raudaskoski, and Alahuhta 2002).

A challenge to the administration of any systemic opioid is that it should opti-

mally match the individual time course of the labor pain. A continuous infusion is

suboptimal, as the parturient experiences no pain between contractions, and it may

increase the risk of respiratory depression, sedation, and other side effects. The on-

set of the opioid’s effect is approximately 30 seconds (Hill 2008), so the prediction

should be made approximately 30 seconds (adjustable according to the requirement)

ahead of the next contraction to accurately match the effect of analgesia. However,

anticipating contractions over a protracted time interval is challenging because of the

inherent uncertainty of the labor experience.

Data mining techniques could be utilized to analyze the uterine contraction-related

data, and thus to improve prediction accuracy and efficiency. Data mining, also known

as knowledge discovery in databases, is the process of discovering new patterns from

data, and is a method of extracting knowledge that cannot be observed from the

surface (Witten and Frank 2005). Data mining provides interesting patterns in terms

of rules, groups, and characterizations by using association rule mining (Agrawal,

Imieliński, and Swami 1993), classification (Jain, Duin, and Mao 2000), clustering (Xu

and Wunsch 2005), and sequential pattern analysis techniques (Shyu, Huang, and Luo

2009). Before developing any data mining techniques, it is necessary to understand

the fundamental reason for uterine contractions from the physiological perspective.

Uterine contractility is a direct consequence of the underlying electrical activities

in the myometrial cells. Spontaneous electrical activities in the muscles in the uterus

are composed of intermittent bursts of spike action-potentials (Marshall 1962). Sin-
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gle spikes can initiate contractions, but multiple, higher-frequency, and coordinated

spikes are needed for forceful and maintained contractions (Marshall 1962).

Isolated myometrial tissue studies, using microelectrodes or extracellular elec-

trodes, have demonstrated the connection between electrical events and contrac-

tions (Marshall 1959; Wolfs and Rottinghuis 1970). The frequency, amplitude, and

duration of contractions are determined mainly by the frequency of the occurrence of

uterine electrical bursts, the total number of cells that are simultaneously active dur-

ing the bursts, and the duration of the uterine electrical bursts, respectively (Marshall

1962). Each burst stops before the uterus has completely relaxed (Marshall 1962).

The agents that directly stimulate or inhibit uterine contractions do so by altering

the electrical properties and the excitability or conductivity of myometrial cells.

Studies have been performed in an attempt to find specific types of cells that may

act as the pacemakers for the human uterus (Duquette, Shmygol, Vaillant, Mobasheri,

Pope, Burdyga, and Wray 2005). However, no specific pacemaker has been found thus

far. It has therefore been suggested that the spontaneous electrical behavior exhibited

by the myometrium is an inherent property of the smooth-muscle cells within the

myometrium.

To conduct predictions, we need to monitor uterine contractions and extract the

patterns. Since electrical activities of the uterus are correlated to uterine contrac-

tions (Marshall 1962), it is intuitive to record the electrical activities directly from the

uterus. Numerous studies (Garfield and Maner 2007; Terrien, Marque, and Germain

2008; Rabotti, Mischi, Oei, and Bergmans 2010) have provided convincing evidence

that uterine electromyography (EMG) activity can be appraised from non-invasive

trans-abdominal surface measurements, as shown in Fig. 1.1, and can be a power-
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Figure 1.1: Typical Uterine EMG Setup (OB-Tools 2011)

ful tool in characterizing parturition. Typical uterine EMG setup includes abdomi-

nal surface electrodes, electrical filters/amplifiers, and acquisition and analysis hard-

ware/software. The EMG bursts correspond to uterine contractions. Both EMG and

electrocardiography (ECG) interpret electrical activities, where ECG is a transtho-

racic interpretation of electrical activities of the heart over time captured and exter-

nally recorded by skin electrodes. The presence of ECG signals often corrupt the EMG

signals recorded from the trunk area (Hu, Mak, and Luk 2009), unreliable for con-

ducting prediction. The uterine magnetomyogram (MMG) is a noninvasive technique

that measures the magnetic fields associated with the action potentials, while the

detection of uterine contractions from the MMG signals is still under study (La Rosa,

Nehorai, Eswaran, Lowery, and Preissl 2008).

The tocodynamometer is a pressure-sensitive contraction transducer, as shown

in Fig. 1.2, which externally measures the tension of the maternal abdominal wall.

However, this measurement is easily disturbed by patient movement or other interfer-
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Figure 1.2: Tocodynamometer Setup (Palomar Pomerado Health 2011)

ence. An alternative to the external measurement is the intrauterine pressure catheter

(IUPC) which measures the exact force of the contractions during labor. It becomes

much easier to detect the contractions, since the pressure increases when the uterus

starts to contract and decreases when the uterus starts to relax. In our study, we

analyze the signal collected by IUPC because it is far more accurate and specific than

the tocodynamometer.

1.1 Motivation and Challenges

The time to peak analgesic effect of a remifentanil bolus usually varies between 60-

90 seconds (Saunders and Glass 2002; Glass, Hardman, Kamiyama, Quill, Marton,

Donn, Grosse, and Hermann 1993) and a contraction generally lasts approximately

60 seconds. Thus a remifentanil bolus given at the beginning of a uterine contraction
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will not give the peak analgesic effect for the contraction for which it is administered.

Therefore, if a remifentanil bolus is to be optimally administered, it is necessary to

anticipate a forthcoming contraction. This, unfortunately, has been difficult. When

the peak analgesic effect of a remifentanil bolus does not coincide with the peak of

the contraction, the risk for sedation, respiratory depression, and fetus depression

increases. After a review of the physiology of labor contractions, we appreciate that a

pacemaker for contractions has thus far not been found (Duquette, Shmygol, Vaillant,

Mobasheri, Pope, Burdyga, and Wray 2005), and there is no such factor from the

physiological point of view that is able to predict the uterine activities ahead of time.

Therefore, an appropriate way for us to approach this problem is to analyze the

intrauterine pressure time series, and undertake the prediction of contractions based

on the learned patterns. We aim to develop data mining techniques, and discover the

pattern/knowledge that is hidden within the data. Meanwhile, in order to predict the

next contraction multiple seconds before it occurs, a long-term prediction is required.

The ever changing labor contraction pattern and diversity across different patients

have posed many challenges to building a predication model with regard to denoising,

adaptive long-term time series prediction, knowledge discovery from the patients’

tracings, and personalization of the prediction.

• Denoising challenge, i.e., the challenge of removing and decreasing the noise in

the collected signal.

Even though we are analyzing the intrauterine pressure time series collected by the

intrauterine pressure catheter (which measures the uterine activity more accurately

than the tocodynamometer), the signals are also contaminated by noise, and suffer



www.manaraa.com

7

from loss of data because of patient movements, system imperfections, and other

unforeseen interference. Data quality directly influences the model’s prediction ability.

Due to various sources of the noise, the noise presents different patterns, such as

low frequency interference, high frequency interference, bursts, and missing values.

Therefore, a low pass filter or a high pass filter or a band pass filter cannot filter out

all types of noise. In addition, the filters usually cause delays and result in misshaping

of the original signal.

• Adaptive long-term time series prediction challenge, i.e., the challenge of time

series prediction, which is adaptive to the changing patterns of the time series,

over a large prediction horizon.

Remifentanil is a short-acting opioid anesthetic agent, but it does not take ef-

fect immediately. In order to make sure that the analgesic effect of remifentanil

coincides with uterine contractions, the prediction model must anticipate the next

contraction early enough to allow the administration of the remifentanil. Therefore,

a long-term prediction of labor contractions appears to be necessary. Long-term

time series prediction (Bontempi 2008; Huang and Shyu 2010; Zhou, Xu, and Wu

2010) is a very challenging task due to the growing uncertainties arising from var-

ious sources, for instance, the accumulation of errors and the lack of information

about the future (Weigend and Gershenfeld 1994). In addition, the pattern of uter-

ine contractions changes as labor progresses. Also, different patients present diverse

contraction patterns in terms of intensity, duration, and period. Thus this renders a

huge challenge in obtaining a single model that is suitable for all patients at all stages

of labor.
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• Knowledge discovery from the patient tracing records challenge, i.e., the chal-

lenge of extracting knowledge from a set of historical labor tracings, and using

it to assist predicting contractions of the current patient of interest.

We have access to a large set of historical patient labor tracings. How to utilize

the historical patient tracings to help predict a new patient’s upcoming contraction

becomes an interesting and difficult challenge. Even though patient intrauterine pres-

sure tracings present different patterns, we can observe repeating sequential patterns

that they have in common, especially for those patients who share similar demo-

graphic and obstetrical information. For example, a patient has a contraction that

lasts 60 seconds with the highest intrauterine pressure at 85 mmHg, and the fol-

lowing contraction that lasts 65 seconds with the highest intrauterine pressure at 90

mmHg. The same sequential pattern, i.e., a contraction that lasts 60 seconds with

the highest intrauterine pressure at 85 mmHg followed by a contraction that lasts 65

seconds with the highest intrauterine pressure at 90 mmHg, is also observed in other

patients. Therefore, if the patient of interest experiences a contraction that lasts 60

seconds with the highest intrauterine pressure at 85 mmHg, the chance of her having

the next contraction that lasts 65 seconds with the highest intrauterine pressure at

90 mmHg is high. This observation motivated us to discover interesting sequential

patterns among the historical patient tracings, and attempt to utilize the sequential

patterns to predict future contractions for a new patient.

• Personalizing the prediction challenge, i.e., the challenge of making the predic-

tion model customized for each patient.
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The contraction pattern differs from woman to woman, from pregnancy to preg-

nancy, and also changes in different stages of a woman’s labor, which makes it very

challenging to accurately perform a prediction. It would be preferred if the predic-

tion model is personalized, which is adaptive to each individual patient’s age, weight,

gestational age, labor anesthesia and oxytocin usage, etc. In order to achieve this

goal, a primary condition is that the patients’ demographic and obstetrical informa-

tion should be available as one of the inputs to the model training process. The

demographic and obstetrical features are mostly nominal, and how to integrate the

nominal features in predicting numerical results becomes another challenge.

1.2 Contributions and Limitations

To address the aforementioned challenges, we propose a novel knowledge-assisted

sequential pattern prediction framework for predicting the intrauterine pressure mul-

tiple seconds ahead in real time. The flowchart of the framework is shown in Fig. 1.3.

In the proposed framework, we first select a group of historical patient tracings (HT )

from the stored records of patients information (HI) based on the current patient’s

demographic and obstetrical information. The selected patients are those who share

similar demographic and obstetrical information with the current patient of interest.

We design a sequential association rule-based collaborative training dataset selection

method to dynamically select a training dataset from the HT and the current patient’s

own most recent training time series for training the prediction models. A k-nearest

neighbors (k-NN) based least squares support vector machine (LS-SVM) approach

with heuristic parameter tuning is proposed to conduct long-term time series predic-
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tion. A post-prediction process is proposed to further enhance the prediction results.

The proposed framework conducts the prediction in real time. To the best of our

knowledge, there has been no previous study to predict contractions.

Figure 1.3: Flowchart of the Proposed Framework

Generally, there are four main contributions of this dissertation, which are sum-

marized and listed as follows.

1. Design a new sequential association rule mining approach to analyze the se-

quential uterine contraction pattern, and group the patients based on some
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demographic and obstetrical features that have an impact on the sequential

uterine contraction pattern.

A new peak point detection and interpolation-based filtering strategy is pro-

posed to remove the noise in the intrauterine time series. The denoised in-

trauterine time series are then used for pattern analysis. A contraction can be

described by the corresponding peak height and period. The contraction pat-

tern is defined by the combination of the height and the period of a contraction.

Instead of calculating the mean or some other statistic measures of a sequence

of contractions, we propose a sequential association rule mining approach to

analyze the sequential uterine contraction pattern. The height and the period

are discretized respectively for the rule mining purpose.

We further analyze whether the demographic and obstetrical features have some

impacts on the sequential uterine contraction pattern. The demographic and

obstetrical features we considered include maternal age, body mass index, ges-

tational age, number of pregnancies, living children pregnancy history, labor

anesthesia, and indication of oxytocin. We divide the patients into groups with

different values of one feature, and then analyze the sequential uterine contrac-

tion pattern of each group. If the sequential uterine contraction patterns of

these groups are different, it means that this feature has a strong impact or

determines the sequential uterine contraction pattern. Thus the feature is kept

for grouping the patients; otherwise, the feature is discarded. This process is re-

peated for each of the considered features. Based on the analysis of 611 patients’

information, we observe that maternal age, gestational age, labor anesthesia,
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and indication of oxytocin impact the sequential uterine contraction pattern

more significantly than the rest of the features. Therefore, these four features

are used to group the patients for later analysis. This is a new perspective on

analyzing the uterine contraction pattern. It is the first attempt in the field to

consider the sequential uterine contraction patterns, and to use demographic

and obstetrical information to differentiate patients.

2. Design a new sequential association rule-based collaborative filtering strategy

to dynamically select the training dataset to train the prediction models.

A new sequential association rule-based collaborative filtering strategy is de-

signed to dynamically select the training dataset from the patient training

database, as well as from the current patient’s own training dataset, and in-

troduce a concept of using the ‘future’ to predict the future. The collaborative

training dataset selection component utilizes a proposed sequential association

rule mining (ARM) technique to discover frequent sequential contraction pat-

terns from the historical patient tracings. Also, this component employs the

collaborative filtering technique to utilize the discovered sequential contraction

patterns of the communities of similar patients to assist in predicting the con-

traction pattern of the current patient. To the best of our knowledge, this is

the first attempt that tries to incorporate collaborative filtering and association

rule mining techniques in time series prediction.

Collaborative filtering is the process of filtering information using techniques

involving collaboration among multiple data sources (Sarwar, Karypis, Kon-

stan, and Riedl 2001; Linden, Smith, and York 2003). The rationale behind
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collaborative filtering is that a user’s preferences, interests, or behaviors can be

predicted by leveraging the preferences, interests, or behaviors of the communi-

ties of similar users. In our proposed framework, collaborative filtering is done

by formulating the contraction prediction problem in the manner that if the

current patient’s contraction pattern matches the contraction patterns of some

previous patients, it is very likely that the current patient’s next contraction

will be similar to, if not the same as, the next contractions of other patients in

the patient database. Based on such an assumption, our proposed framework

builds a database of contraction patterns/profiles (in the forms of sequential as-

sociation rules) from the historical patient labor tracings, and searches for the

matching sequential association rules of the current patient’s contraction pat-

tern to predict the pattern of the current patient’s next contraction. The idea

is that if the current patient’s contraction pattern matches with the condition

part of a rule (i.e., the contraction pattern of the past patients), the patient’s

next contraction pattern is predicted to be the same as the consequent part

of the rule (i.e., the next contraction pattern of previous patients). Through

the matching process, we can selectively utilize the available data to train the

prediction models.

3. Design a novel k-NN based LS-SVM approach with heuristic parameter tuning

strategies for long-term time series prediction.

As a classical kernel-based method for regression, LS-SVM has been widely

applied to time series prediction, especially LS-SVMs with nonlinear kernels

such as radial basis function (RBF) kernels (Suykens, Gestel, Brabanter, Moor,
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and Vandewalle 2002). However, selecting optimal hyper-parameters has always

been a challenging task for researchers. We propose a novel heuristic parameter

tuning approach to decide the appropriate value ranges and search strategies for

both the regularization factor and the Gaussian kernel parameter of LS-SVM

with the RBF kernel. The parameter tuning method is based on information

extracted from the training dataset, and it is adaptive to the characteristics of

a specific time series data.

To perform long-term time series prediction, we adopt the direct prediction

strategy, which trains an individual model for each prediction horizon respec-

tively. A k-NN component is introduced to select the instances from the selected

training dataset for training the LS-SVM regressors, so as to reduce the compu-

tation complexity of the training phase and to improve the prediction precision.

We also propose a new distance function for the k-NN approach, which considers

both the Euclidean distance and the dissimilarity of the trend between the time

series. The proposed k-NN based LS-SVM approach for long-term time series

prediction is also the first attempt to utilize the k-NN technique in LS-SVM for

long-term time series prediction.

4. Design a unique post-prediction process, which includes boundary constraint,

multi-value integration and vertical correction components.

The post-prediction process is designed to further improve the prediction preci-

sion, and makes sure that the results are valid in the application domain. The

boundary constraint component sets a dynamic constraint, including the upper

bound and lower bound, for the predicted values. The multi-value integration
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component combines prediction results from several individual models to gen-

erate an output. The vertical correction component is designed specially for

intrauterine contraction time series, which detects and smoothes out the irregu-

lar sharp pulses and peaks with very low heights in the prediction results. The

output of this component is the final output of the proposed framework.

Scope and limitations of the proposed framework are listed below.

1. The current work mainly focuses on the intrauterine pressure time series data.

Even though IUPC is a more accurate measure than tocodynamometer, there

are some intrauterine pressure time series that do not show the typical regu-

lar contraction pattern (i.e., they are not composed of intermittent peaks one

after another with rest periods in between). The application of the proposed

framework is limited to those patients whose intrauterine pressure time series

are regular, i.e., containing a sequence of recognizable peaks.

In addition, IUPC is not available in some third world countries, where an au-

tomatic anesthesia equipment is the most in need due to the lack of experienced

anesthetists. Consequently, the next step of this work includes designing a more

advanced noise filtering or signal recovering technique to recognize contractions

from signals obtained by external instruments, so as to enable further analysis.

2. Some parameters and thresholds are determined based on an iterative search.

In addition to the two hyper-parameters for LS-SVM, we also have some other

parameters and thresholds in the proposed framework, such as the length of the

input vector, the length of the training time series, and the minimum support.
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Each of these parameters and thresholds is determined according to an iterative

process that is carried out in order to find the most suitable value for the training

dataset. In each iteration, different values are applied to the training dataset,

and the one with the lowest error measure is selected as the threshold value.

Meanwhile, it is difficult to decide the optimal searching range and iteration

step size, because if the searching range is large and the step size is small, the

computational cost might be too high. In contrast, if the searching range is

small and step size is large, the computational cost is low, but it might skip the

global optimum. There might also be an overfitting problem that the values are

too fitted to the training dataset.

1.3 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 provides a literature review on

the physiology of labor contractions, time series prediction, and knowledge discovery

and data mining techniques. Their general applications are included as well.

Chapter 3 describes the structure of the proposed knowledge-assisted sequential

pattern analysis framework, and also presents some related techniques, including the

long-term time series prediction and LS-SVM for regression. This chapter details

the preprocess procedure for the inputs of the framework, k-NN based LS-SVM for

long-term time series prediction, and the post-prediction process. It also presents the

criteria for evaluating the proposed framework.

Chapter 4 presents the proposed patient selection and collaborative training dataset

selection components. First, the contraction feature extraction method is introduced
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to map the intrauterine pressure time series to the feature space. Second, a dis-

cretization method is developed to nominalize the extracted numerical features for

the following sequential association rule mining algorithm. Third, a sequential as-

sociation rule mining algorithm is proposed to discover the interesting sequential

patterns among the contractions. Based on the sequential association rule mining

approach, a patient selection approach is proposed to select some patients from the

stored records, who share similar demographic and obstetrical information with the

current patient of interest. Also, a rule-based collaborative training dataset selec-

tion method is proposed to dynamically generate a training dataset from the selected

patients’ intrauterine pressure database and current patient’s own past tracing.

Chapter 5 focuses on the heuristic parameter tuning strategies for LS-SVM. A

novel heuristic method is designed to decide the searching range of the Gaussian

kernel parameter based on the information extracted from the training time series. A

strategy for efficiently locating the regularization factor is also proposed. Experiments

were conducted to evaluate the efficacy of the proposed strategies.

Chapter 6 describes the dataset used for the experiments, and provides experi-

mental results for evaluation and comparison.

Chapter 7 concludes the dissertation by highlighting the achievements of the pro-

posed approach and introduces avenues for future work.
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Literature Review

In this chapter, the studies on the coordination of uterine contractions are reviewed.

The detailed discussion is also provided on time series prediction algorithms, knowl-

edge discovery and data mining techniques, and their applications.

2.1 Coordination of Uterine Contractions

Uterine contraction is a direct consequence of the underlying electrical activities in

the myometrial cells. Electrical and contractile activities in the myometrial cells are

controlled by myogenic, neurogenic, and hormonal control systems (Challis and Lye

1994; Garfield 1987).

Myogenic activity, the spontaneous activity of the myometrium that occurs in the

absence of any neural or hormonal input, includes the intrinsic excitability of the

muscle cell, the ability of the muscle to contract spontaneously, and the mechanisms

that produce rhythmic contractions. A biopsy specimen of uterine tissue, placed

in a physiological solution, will contract involuntarily every 2 to 5 minutes without

stimulation (Coad and Dunstall 2001). It is important to notice the ability of the

muscle to contract spontaneously without any neural or hormonal input. As a type

18
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of contractions, it is also caused by the movement of ions. However, it is initiated

by the cell itself, not by an outside occurrence or stimulus. How can we evaluate

the myogenic activity? Can it be measured? The myogenic property typically varies

between patients and during parturition. Based on the published literature, it is hard

to know when the ion channels in the cell membrane would spontaneously open and

close, which is described more as a spontaneous activity.

On top of the muscle’s inherent myogenic properties, neurogenic and hormonal

control systems are superimposed to initiate, augment, and suppress myometrial ac-

tivities (Challis and Lye 1994; Garfield 1987). Myogenic control is dominated by

hormonal influences, including estrogen, oxytocin, progesterone, relaxin, etc., espe-

cially those of estrogen and progesterone, which influence myogenic characteristics

through their generally opposing actions (Garfield, Ali, Yallampalli, and Izumi 1995).

In summary, progesterone and relaxin are found to inhibit myometrial contractility,

while estrogen and oxytocin increase uterine activities. However, measuring absolute

hormone levels may be misleading, because the biological effects are also determined

by the receptor density, levels of proteins, or postreceptor changes (Coad and Dunstall

2001). In addition, hormone concentrations change as labor progresses. Meanwhile,

local changes in hormone concentration, not reflected in peripheral blood, would also

affect myometrial activities. In order to utilize hormonal information in predicting

the coming contractions, we would need to have access to the peripheral and local

hormone concentrations, receptor density, levels of proteins, and postreceptor changes

in real time. However, this is not achievable based on the current monitoring tech-

niques. On the other hand, neurogenic control is not very critical, since labors can

occur in women with spinal injury, although the length of the labor may be altered in
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these women (Coad and Dunstall 2001). Contractions can be temporarily abolished

by emotional disturbances, such as moving from the home to the hospital, a change

in staff shifts, and some other neurogenic factors. The frequency and strength of

the contractions can be increased by stretching of the cervix or pelvic floor by the

presenting part of the baby.

The coordination of contractions occurs by coupling of myometrial cells via elec-

trical (e.g., gap junctions) and chemical (e.g., oxytocin) mechanisms (Baxi and Petrie

1987). Polarization and depolarization of the cell membranes move the electrical sig-

nals across the myometrium (Akerlund 1997). These electrical signals are generated

by the movement of calcium through ion channels into the myometrial cell. Action

potentials propagate rapidly throughout the uterus, initiating the movement of cal-

cium into the cells. These intracellular calcium waves propagate more slowly than

the action potentials, gradually increasing the number of bundles involved in the

contractions (Garfield, Blennerhassett, and Miller 1988).

As action potentials are conducted to the neighboring myometrial cells, the groups

of cells contract, leading to what is perceived by the woman as a uterine contraction.

The coordination of uterine contractions occurs when all myometrial cells contract

nearly simultaneously. Coordination and synchronization of contractions are facili-

tated by the low-resistance gap junctions between myometrial cells. These junctions

allow the propagation of the action potentials between cells and thus throughout the

uterus.

Furthermore, the gap junction mechanism explains the changes in contraction

patterns during pregnancy and delivery. The number of gap junctions influences the

areas of the uterus that contract, which determines the intrauterine pressure levels.
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In the literature, it is reported that the gap junction density can be determined

by measuring the electrical resistance of tissues (Coad and Dunstall 2001), but this

measurement cannot be done in real time. Therefore, an appropriate way for us to

study the contraction pattern is to analyze the intrauterine pressure time series, and

undertake the prediction of contractions based on the learned pattern. The timing

and dosage of the remifentanil can be determined accordingly based on the prediction

results to relieve the labor pain.

2.2 Time Series Prediction

Time series prediction is to predict the future values based on the current and previous

values of a time series. Time series modeling and prediction are very attractive topics,

which play an important role in many fields such as transportation prediction (Crone

2010), power prediction (Kusiak, Zheng, and Song 2009; Maralloo, Koushki, Lucas,

and Kalhor 2009; Varadan, Leung, and Bosse 2006), and health care (Homma, Sakai,

and Takai 2009; Coyle 2009). Most of the studies on time series prediction focus on

one-step ahead prediction, i.e., short-term time series prediction. A more challenging

task in the time series prediction domain is long-term time series prediction, in which

prediction must be done multiple steps ahead. When the prediction horizon increases,

the uncertainty of the future trend also increases, and it is harder to model and capture

the inherent relationship of a time series.

The prediction process is commonly performed by observing and modeling past

values, and assuming that future values will follow the same trend. For short-term

time series prediction, there are plenty of classical time series prediction approaches,
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such as exponential smoothing (Jones 1966), linear regression (Lin, Lin, Zhou, and

Yao 2007), autoregressive model (AR) (Soltani, Boichu, Simard, and Canu 2000), au-

toregressive integrated moving average (ARIMA) (Zhang 2003), support vector ma-

chines (SVM) (Sapankevych and Sankar 2009), artificial neural networks (ANN) (Jang

1993; Zhang 2003), Kalman filter (Cristi and Tummala 2000), and fuzzy logic (Jang

1993). In order to utilize these short-term time series prediction models for long-term

time series prediction, there are two approaches: the recursive approach and the di-

rect approach (Herrera, Pomares, Rojas, Guilln, Prieto, and Valenzuela 2007; Nguyen

and Chan 2004).

The recursive approach trains one prediction model by optimizing the prediction

performance at the next time step, and then iterates the same model using the pre-

viously predicted values as part of the input to generate a prediction for a higher

horizon. The recursive approach approach suffers from the error propagation prob-

lem. On the other hand, the direct approach trains one prediction model for each

prediction horizon by optimizing the prediction performance at each prediction hori-

zon. The direct approach needs to train multiple models, so it takes a longer time

in the training stage while it avoids the error accumulation problem. The direct

approach usually outperforms the recursive approach on the prediction accuracy as-

pect. A multi-input multi-output local learning (LL-MIMO) approach (Bontempi

2008; Taieb, Bontempi, Sorjamaa, and Lendasse 2009), which is used as one of the

comparison approaches in the experiment, predicts the future values as a whole simul-

taneously. However, it could still be decomposed into multiple independent models,

thus it can be considered as a direct approach.
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Due to the difficulties that arise in long-term time series prediction, not every

model that works for short-term time series prediction would work well in long-term

prediction. For example, the autoregressive model is a linear prediction method

that attempts to predict the next value based on the previous observations (Soltani,

Boichu, Simard, and Canu 2000), which is typically applied to autocorrelated time

series data. Because of its linear nature, it is not able to achieve a good prediction

precision if the time series contain non-linear components. In the case of long-term

time series prediction, the mapping function is usually non-linear. Therefore, the

autoregressive model is not preferable. In addition, the Kalman filter is an optimal

recursive filter for linear functions subjected to Gaussian noise (Cristi and Tummala

2000). In order to build a suitable Kalman filter, the mechanism which generates

the time series should be known, or at least enough information of the mechanism

should be available to model the dynamics of the target. For example, the motion of

a missile follows Newton’s laws of motion, and so the missile tracking problem can

be modeled by constructing the relationships among external force, position, velocity,

and acceleration of the missile. However, this is not the case for intrauterine pressure

tracing. We are not aware of the mechanism of the labor contractions. Meanwhile, the

recursive approach has to be applied to conduct long-term time series prediction in

the case of the Kalman filter. Error propagation makes the Kalman filter unreliable,

especially when the prediction horizon is high. Therefore, the Kalman filter is not

included in the comparison experiments.

For long-term time series prediction (Herrera, Pomares, Rojas, Guilln, Prieto,

and Valenzuela 2007; Liu and Yao 2009; Maralloo, Koushki, Lucas, and Kalhor

2009; Meng, Dong, and Wong 2009; Sfetsos and Siriopoulos 2004), a lot of efforts
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have been placed on deriving variations of least squares support vector machine (LS-

SVM) (Huang and Shyu 2010; Suykens, Gestel, Brabanter, Moor, and Vandewalle

2002) and ANN (Yegnanarayana 2004) approaches, which are the fundamental ap-

proaches for nonlinear classification and function estimation, and are successfully

applied to time series prediction. In order to extend the linear LS-SVM to a non-

linear technique, kernel functions were introduced to implicitly map the input data

into a high dimensional feature space, which can have infinite dimensions. The most

frequently used kernels in LS-SVM are linear kernel, polynomial kernel, radial basis

function (RBF) kernel, and multilayer perceptron (MLP) kernel. The kernel trick ex-

tends the LS-SVM theory to a nonlinear technique without an explicit construction

of the nonlinear mapping function. Composite kernels (Jiang, Wang, and Wei 2007)

have been studied, which combine both global kernel (e.g., polynomial kernel) and

local kernel (e.g., RBF kernel) to balance the characteristics of fitting and generaliza-

tion of these two kernels. Meanwhile, a prior knowledge-based Green’s kernel (Farooq,

Guergachi, and Krishnan 2007) was used in chaotic time series prediction by using the

concept of matched filters. The generality of its application, however, is not proven.

To further improve the long-term prediction performance, an input feature selection

strategy was also combined with LS-SVM (Sorjamaa, Hao, Reyhani, Ji, and Lendasse

2007) and ANN (Puma-Villanueva, dos Santos, and Von Zuben 2007). By using the

features selectively, it better utilizes the information from the past, and reduces the

computational complexity of the predictor. However, there have been limited research

efforts focusing on choosing the instances adaptively from the training dataset to re-

duce the input dataset for training a prediction model.
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Wavelet methods are widely used in noise removal in both one-dimensional sig-

nals and image data. In addition, there has been an increasing interest in wavelet

transformation for time series prediction. Many approaches have been proposed for

time-series filtering and prediction by combining the wavelet transformation with the

prediction models, such as neural networks (Lotric 2004; Menezes and Barreto 2008),

Kalman filtering (Cristi and Tummala 2000), and autoregressive models (Soltani,

Boichu, Simard, and Canu 2000). Renaud et al. (2005) demonstrated how multireso-

lution prediction can capture short-range and long-term dependencies by combining a

wavelet denoising technique and a wavelet predictive method. Wei and Billings (2006)

proposed a direct modeling approach for long-term non-linear time series predictions

by introducing the multiresolution wavelet-based non-linear auto-regressive moving

average (NARMA) models.

2.3 Knowledge Discovery and Data Mining

The knowledge discovery in databases (KDD) process is usually composed of five

stages as shown in Fig. 2.1, including selection, preprocessing, transformation, data

mining, and interpretation/evaluation (Fayyad, Piatetsky-shapiro, and Smyth 1996).

Data mining is the analysis step of the knowledge discovery in databases process. As

an interdisciplinary field of computer science, data mining is the process of discovering

new patterns from large datasets involving methods at the intersection of artificial

intelligence, machine learning, statistics, and database systems. With the amount of

data stored in the databases continuously growing, there is an urge to discover the
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valuable hidden knowledge in a large amount of data. Consequently, data mining has

been attracting a significant amount of research, industry, and media attention lately.

Figure 2.1: An Overview of the Steps That Compose the KDD Process (Fayyad,
Piatetsky-shapiro, and Smyth 1996)

A wide variety of data mining methods exist, such as association analysis, clas-

sification, clustering, statistical learning, bagging and boosting, sequential pattern

mining, integrated mining, rough set mining, link mining, and graph mining (Wu,

Kumar, Ross Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Stein-

bach, Hand, and Steinberg 2008). In this section, we briefly introduce a subset of

the techniques that are related to our work, including association rule mining and

temporal pattern analysis.

2.3.1 Association Rule Mining

Association rule mining, first introduced by Agrawal et al. (1993), is one of the most

important and well studied data mining techniques (Srikant and Agrawal 1996; Jiang
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and Gruenwald 2006; Srikant and Agrawal 1995). Its goal is to extract interesting

correlations, frequent patterns, associations, or casual structures among sets of items

in the transaction databases or other data repositories. Association rule mining is to

discover the association rules that satisfy the predefined minimum support and con-

fidence measures from a given database. The problem can be decomposed into two

subproblems. The first subproblem is to find those itemsets whose occurrences exceed

a predefined threshold (i.e., minimum support) in the database. Those itemsets are

called frequent itemsets. The second subproblem is to generate the association rules

from those frequent itemsets with the constraints of a minimal confidence threshold.

Since the second subproblem is quite straightforward, most of the research has been

focusing on the first subproblem. Agrawal and Srikant (1994) proposed an algorithm

(named Apriori), which is more efficient during the candidate generation process.

Apriori uses pruning techniques to avoid measuring certain itemsets, while guaran-

teeing the correctness and completeness. The principle of the Apriori algorithm is

that if an itemset is frequent, all of its subsets must also be frequent (Agrawal and

Srikant 1994).

The main bottlenecks of the Apriori algorithm are 1) the complex candidate gen-

eration process that uses most of the time, space, and memory, and 2) the multiple

scans of the database. Based on the Apriori algorithm, there have been many new

algorithms designed to reduce the computational cost of the association rule min-

ing technique. The computational cost can be reduced 1) by reducing the number

of passes over the database, 2) by sampling the database, 3) by adding extra con-

straints on the structure of patterns, and 4) through parallelization (Kotsiantis and

Kanellopoulos 2006). Some representing approaches are introduced below.
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The FP-Tree frequent pattern mining algorithm (Han and Pei 2000) passes over

the database only twice to generate the frequent itemsets without any candidate gen-

eration process. The frequent pattern generation process includes two steps, which are

constructing the FP-Tree and generating the frequent patterns from the constructed

FP-Tree. The mining result is the same as the Apriori algorithm. FP-Tree is a com-

pressed representation of the original database, because only the frequent items are

used to construct the tree, and other infrequent items are pruned. It uses a divide

and conquer method that significantly reduces the size of the FP-Tree. However,

FP-Tree is not suitable for incremental frequent pattern mining. If there is a new

added transaction, it is required to rebuild the whole tree.

For frequent pattern mining on stream data, especially when the stream flows at a

faster rate than the processing speed, it is necessary to employ sampling techniques.

How to sample the data stream and how to decide the sample rate become the key

issues. Chuang et al. (2005) proposed a progressive sampling algorithm, called sam-

pling error estimation (SEE), which aims to identify an appropriate sample size for

mining association rules. SEE has two advantages. First, the sample size can be

determined without the need of executing association rules. Second, the identified

sample size of SEE is accurate, meaning that the association rules can be efficiently

executed on a sample of this size to obtain a sufficiently accurate result. This is

attributed to the merit of SEE for being able to reduce the influence of randomness

by examining several samples with the same size in one database scan.

Usually, the goal of association rule mining is to discover all the patterns whose

frequency exceeds a predefined threshold. However, sometimes it is required to add

some constraints on the structure of the patterns based on domain knowledge. As-



www.manaraa.com

29

sociation rule mining should be able to utilize such constraints, so as to speed up

the mining process. Wojciechowski and Zakrzewicz (2002) focused on improving the

efficiency of constraint-based frequent pattern mining by using the dataset filtering

techniques. Dataset filtering conceptually transforms a given data mining task into

an equivalent one operating on a smaller dataset. Rapid association rule mining

(RARM) (Das, Ng, and Woon 2001) is an association rule mining method that uses

the tree structure to represent the original database and avoids the candidate gener-

ation process, which is similar to FP-Tree. In order to improve the efficiency, some

constraints were applied in RARM during the mining process to generate only those

association rules that are interesting to the users, instead of all the association rules.

In order to take advantage of the higher speed and greater storage of the parallel

systems, it is required to partition the database among the processors. Accordingly,

the association rule mining technique should adapt to the distributed memory sys-

tem (Schuster and Wolff 2004). An efficient parallel algorithm FPM (Fast Parallel

Mining) for mining association rules on a shared-nothing parallel system has been

proposed by Cheung and Xiao (1998). It adopts the count distribution approach and

has incorporated two powerful candidate pruning techniques, i.e., distributed pruning

and global pruning. It has a simple communication scheme which performs only one

round of message exchanges in each iteration. Parthasarathy et al. (2001) present

a comprehensive literature survey on parallel association rule mining with a shared-

memory architecture covering most trends, challenges, and approaches adopted for

parallel data mining. All approaches compared in this survey are Apriori-based.
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2.3.2 Temporal Pattern Analysis

Temporal pattern analysis is an important topic in data mining. Different from

association rule mining, which attempts to find the correlative items occurring si-

multaneously in one transaction, temporal pattern mining searches correlative items

occurring at different time instances (i.e., asynchronously). The existing algorithms

in this area can be divided into several categories: sequential association rules (Boon-

jing and Songram 2007; Jiang and Gruenwald 2006), cyclic association rules (Ozden,

Ramaswamy, and Silberschatz 1998), frequent episodes (Wang, Hou, and Zhou 2006),

segment-wise periodic patterns (Han, Gong, and Yin 1998), and inter-transaction as-

sociation rule mining (Han, Lu, and Feng 1998; Tung, Lu, Han, and Feng 2003).

Even though there are temporal components in all these patterns, mining sequen-

tial patterns, cyclic association rules, frequent episodes, and segment-wise periodic

patterns can also be categorized as intra-transaction association rule mining, in con-

trast to inter-transaction association rule mining. For example, each sequence is actu-

ally taken as one transaction in sequential pattern mining, and then it finds the similar

itemsets with timestamps, which satisfy the minimum support requirement. The dis-

covered association rule is intra-transactional. The challenge of inter-transaction rule

mining is that it breaks the boundary of the transactions, which leads to an increasing

number of potential itemsets and rules. FITI finds the inter-transactional association

rules based on intra-transactional associations, and uses a special data structure for

efficient mining inter-transactional frequent itemsets (Tung, Lu, Han, and Feng 2003).

PROWL uses a projected window method and a depth-first enumeration approach

to discover frequent patterns quickly, which has shown to outperform FITI (Huang,
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Chang, and Lin 2004). Algorithms for mining follow-up correlation patterns from

time-related databases (Zhang, Huang, Zhang, and Zhu 2008; Zhang, Zhang, Zhu,

and Huang 2006) generate inter-transactional rules with quantity constraints.

Meanwhile, online mining for frequent itemsets, i.e., mining frequent itemsets over

data streams, has received much attention due to the increasing prominence of data

streams in a wide range of applications (Cheng, Ke, and Ng 2008). Unlike mining

static databases, mining frequent itemsets over data streams poses many challenges,

including its one-scan nature, unbounded memory requirement, the high data arrival

rate of the data stream, and the combinatorial explosion of the itemsets. Due to these

challenges, research studies have been conducted on approximating mining results,

along with some reasonable guarantees on the quality of the approximation. Existing

algorithms can be generally divided into two categories based on the adopted window

model: the landmark window (Chang and Lee 2003; Giannella, Han, Pei, Yan, and

Yu 2003; Lee and Lee 2005) and the sliding window (Chang and Lee 2004; Chi, Wang,

Yu, and Muntz 2004). The sliding window model captures recent pattern changes and

trends. However, performing the update for each incoming and expiring transaction

is usually much less efficient than batch-processing, especially in a large search space.

Thus, these methods may not be able to cope with high-speed data streams that

involve millions of transactions generated from some real-life applications.



www.manaraa.com

CHAPTER 3

Overview of the Proposed Framework

In this chapter, the detailed structure of the proposed framework is presented. The

details of the data preprocessing approach are introduced. The related techniques,

including long-term time series prediction and LS-SVM for regression, are then dis-

cussed. A novel k-NN based LS-SVM for long-term time series prediction approach

and a unique post-prediction process are proposed in Section 3.4 and Section 3.5,

respectively. Framework evaluation criteria used in the experiments are included in

the end of this chapter.

3.1 Structure of the Proposed Framework

Figure 3.1 shows the system architecture of the proposed prediction framework in

detail. The inputs to the framework include a training time series d, historical patient

information HI, current patient’s demographic and obstetrical information, and a

testing time series td. Both the training time series d and the testing time series

t are from the preprocessed intrauterine pressure time series of the current patient

of interest. The historical patient information HI contains multiple past patients’

preprocessed intrauterine pressure time series and their demographic and obstetrical

32
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Figure 3.1: System Architecture of the Proposed Framework



www.manaraa.com

34

information. The output of the framework is the intrauterine pressure values predicted

multiple seconds ahead.

The framework mainly contains five parts according to the functionalities: 1)

patient selection, 2) collaborative training dataset selection, 3) heuristic parameter

tuning for LS-SVM, 4) k-NN based LS-SVM for long-term time series prediction,

and 5) the post-prediction process, which includes boundary constraint, multi-value

integration and vertical correction components. The five parts are highlighted in

different colors and enclosed by the dashed lines. The details of patient selection

and collaborative training dataset selection are described in Chapter 4, and heuristic

parameter tuning method for LS-SVM is described in Chapter 5. The remaining

components are presented in the following sections.

3.2 Inputs to the Framework

The intrauterine pressure signal is measured by the intrauterine pressure catheter

as shown in Fig. 3.2, and collected by the QS perinatal clinical information system

manufactured by General Electric Company. Usually, an intrauterine pressure tracing

is composed of intermittent peaks one after another with rest periods in between.

The start of a peak corresponds to the start of a contraction. The time from the

beginning to the end of one contraction is called the duration. The time from the

beginning of one contraction to the beginning of the next contraction is called the

period. Figure 3.3 shows an example of the intrauterine pressure time series. In this

example, the duration of the contractions is approximately 1 minute, and the period

is approximately 5 minutes.
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Figure 3.2: Intrauterine Pressure Catheter (Palomar Pomerado Health 2011)

The original intrauterine pressure time series are sampled four times each second

within the value range [0,100]mmHg collected by the QS perinatal clinical information

system. Due to some system constraints, patients’ movements, or other unforeseen

interference, the intrauterine pressure time series are often contaminated by noise,

and may suffer from loss of data. Poor data quality significantly influences the per-

formance of the prediction. Therefore, a preprocessing step is necessary to reduce the

Figure 3.3: Intrauterine Pressure Time Series
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noise as much as possible. We subsample the data once each second, adjust all the

values that are beyond the given range [0,100]mmHg caused by system imperfections,

and propose a new interpolation-based technique to reduce the noise. In this section,

we present the details of the denoising method.

Figure 3.4: Data Preprocessing Step

The pattern of the noise in intrauterine contraction time series varies, making it

difficult to filter by a regular low pass filter. In our work, we further subsample the

data and detect the peak points, which are very crucial to determine the shape of the

curve. Based on these selected points, an interpolation method is applied to rebuild

the signal. Two techniques are detailed in the following subsections: 1) peak point

detection, and 2) interpolation. As shown in Fig. 3.4, both the training time series d

and the testing time series td are derived from the intrauterine pressure time series

of the current patient of interest through the denoising process. The intrauterine

pressure time series in the HI are also denoised using the same approach.

3.2.1 Peak Point Detection

The following method is designed to locate and measure the positive peaks in a

noisy signal introduced by O’Haver (2011). Four parameters should be predefined:

SlopeThreshold, AmpThreshold, SmoothWidth, and FitWidth, which can be varied
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depending on the characteristics of the signal (O’Haver 2011). It detects the peaks

by looking for the downward zero-crossings in the smoothed first derivative that

exceed SlopeThreshold and the peak amplitudes that exceed AmpThreshold, and

determines the position, height, and approximate width of each peak by least-square

fitting the top part of the peak. The four parameters are defined as follows.

• SlopeThreshold: The slope of the smoothed first-derivative that is taken to

indicate a peak. This discriminates on the basis of the peak width values.

Larger values of this parameter will neglect broad features of the signal.

• AmpThreshold: Discriminates on the basis of the peak height values. Any peak

with a height smaller than this value is ignored.

• SmoothWidth: The width of the smooth function that is applied to the data

before the slope is measured. Larger values of SmoothWidth will neglect those

small and sharp features. A reasonable value is typically about 1/2 of the

number of data points in the half-width of the peaks.

• FitWidth: The number of points around the top part of the (unsmoothed)

peak that are taken to estimate the peak heights, positions, and widths. A

reasonable value is typically about equal to 1/2 of the number of data points in

the half-width of the peaks. The minimum value is 3.

In order to measure the peaks in the intrauterine pressure time series that cor-

respond to contractions, we prefer to know the maximum value of the peak. The

maximum value is more meaningful than the measured height by least-square fitting,
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because the maximum value is the real height of the peak. When the shape of the

top part of the peak is irregular or non-parabolic, the calculated height might devi-

ate significantly from the maximum value. Therefore, we modify the peak detection

method as follows. Detect the peaks by looking for the downward zero-crossings in

the smoothed first derivative that exceed SlopeThreshold and the peak amplitudes

that exceed AmpThreshold, and determine the position and height of each peak by

locating the maximum value of the top part of the peak. In this case, there is no

minimum value requirement for FitWidth. The detected peak points together with

the subsampled points at each s seconds as a whole are the input for interpolation to

rebuild the signal.

3.2.2 Interpolation

Interpolation is the process of defining a function that takes on specified values at

specified points. The shape-preserving piecewise cubic Hermite interpolation (Math-

works.com 2008) is suitable in our application, and it works better than piecewise

linear interpolation, interpolating polynomial, and the piecewise cubic spline interpo-

lation, because it follows the main trend of the time series and preserves the shape

of the curve smoothly. Piecewise linear approach cannot provide smooth interpola-

tion. Interpolating polynomial and the piecewise cubic spline interpolation are able

to generate interpolation smoothly, but they do not guarantee preserving the main

trend.

The key idea of the shape-preserving piecewise cubic Hermite interpolation is to

determine the slopes at the given points so that the interpolation function values do
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not overshoot the data values. Given N points in the plane, (xk, yk), k = 1, · · · , N ,

with distinct xks, let hk denote the length of the kth subinterval:

hk = xk+1 − xk; (3.1)

then the first divided difference, δk, is given in Equation (3.2):

δk = (yk+1 − yk)/hk. (3.2)

Let dk be the slope of the interpolation at xk. If δk and δk−1 have opposite signs or

if either of them is zero, then xk is a discrete local minimum or maximum, in this

case we set dk = 0.This is illustrated in the first half of Fig. 3.5. The lower solid

line is the piecewise linear interpolation. Its slopes on both sides of the breakpoint

have opposite signs. Consequently, the dashed line has slope zero. The curved line is

the shape-preserving interpolation, formed from two different cubics. The two cubics

interpolate the center value and their derivatives are both zero. If δk and δk−1 have

the same sign and the two intervals have the same length, then dk is set to be the

harmonic mean of the two discrete slopes as in Equation (3.3) (Mathworks.com 2008).

This is shown in the later half of Fig. 3.5.

Figure 3.5: Slopes for Shape-Preserving Hermite Interpolation
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1

dk

=
1

2
(

1

δk−1

+
1

δk

) (3.3)

If δk and δk−1 have the same sign, but the two intervals have different lengths, then

dk is set to be a weighted harmonic mean of the two discrete slopes, with weights

determined by the lengths of the two intervals.

w1 + w2

dk

=
w1

δk−1
+

w2

δk

, (3.4)

where w1 = 2hk + hk−1 and w2 = hk + 2hk−1. This proposed preprocess step, which

combines data subsampling, peak detection and interpolation, filters much noise and

preserves the main shape of the curve. It is a necessary step before doing prediction

to reduce the influence of the noise and ensure a good performance.

3.3 Related Techniques

In this section, we briefly describe the problem of long-term time series prediction

and two strategies to solve the problem. An introduction to the LS-SVM approach

is also included.

3.3.1 Long-Term Time Series Prediction

Long-term time series prediction is used to estimate future values multiple steps

ahead. In real world applications, it is usually necessary to predict multiple steps

ahead, instead of only predicting the value of the next step. In the case of our task,

long-term time series prediction should be done to predict the intrauterine pressure

values 30 seconds in advance. Prediction is not the ultimate goal, and it is commonly
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followed by decision making based on the predicted results. Decision making and

the corresponding action take time and might have some delays on their effects. The

capability of looking multiple steps ahead enables proactive reaction. Therefore, long-

term time series prediction is more useful and more important than the short-term

time series prediction. However, long-term time series prediction also brings more

difficulties because of the increasing uncertainty and the lack of information about the

future trend. Methods for long-term time series prediction can be broadly categorized

into two trends: recursive prediction strategy and direct prediction strategy (Herrera,

Pomares, Rojas, Guilln, Prieto, and Valenzuela 2007). In this section, we provide a

detailed description of these two strategies.

Recursive Prediction Strategy

A time series A is a sequence of data points at, usually collected at uniform time

intervals consecutively. Each data point, at, is an observation at time t. Long-

term time series prediction is to predict the future n values based on the previous

p observations, where n > 1 and p ≥ 1. Recursive prediction strategy first trains a

one-step ahead prediction model, f1, as shown in (3.5), and then iterates the same

model multiple times taking the previously predicted values as a part of the input.

For example, at+2 is calculated in (3.6).

at+1 = f1(at, at−1, . . . , at−p+1); (3.5)

at+2 = f1(at+1, at, . . . , at−p+2). (3.6)

Here, at+1 is an estimated value, and its true value at+1 is not available at time t.

Iterate f1 in the similar manner to predict at+n, which is n-step ahead prediction.
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This approach is simple and computationally inexpensive, because it only needs to

train one prediction model. However, it takes output from the prediction model

as part of the input vector repeatedly, so it suffers from error accumulation problem.

Especially, when the prediction horizon is higher, the error propagation is more severe.

Therefore, the prediction accuracy of this approach is usually low.

Direct Prediction Strategy

Direct prediction strategy (Herrera, Pomares, Rojas, Guilln, Prieto, and Valenzuela

2007) trains one prediction model for each prediction horizon based on the historical

data, respectively. For n-step ahead prediction, n models should be trained as de-

scribed in Equation (3.7). The n models share the same set of past true values as the

input, but they use different outputs.

at+i = fi(at, at−1, . . . , at−p+1), 1 ≤ i ≤ n. (3.7)

The computational cost of the direct prediction strategy is higher, because it needs to

train n different models. Its merit is that there is no error accumulation problem, so

the prediction accuracy of this approach is usually higher than that of the recursive

prediction strategy. In the proposed framework, we adopt this direct prediction strat-

egy to achieve a higher prediction accuracy value for long-term time series prediction,

i.e., we train n different models to predict n-step ahead.

3.3.2 LS-SVM for Regression

The LS-SVM method is widely used in nonlinear regression and classification (Suykens,

Gestel, Brabanter, Moor, and Vandewalle 2002). Here, we provide an overview of its
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application in solving the nonlinear regression problem. Given a set of training in-

stances {(x1, y1), (x2, y2), . . . , (xN , yN)}, where N is the number of training instances.

Let x ∈ R
p, y ∈ R, and ϕ(x) : R

p → R
ph be a mapping function which maps the

input vector x, of which the dimensionality is p, to a high dimensional feature space

at dimension ph. The LS-SVM model can be described as: y(x) = wTϕ(x)+ b, where

w ∈ R
ph is a weight vector and b is the bias.

It is an optimization problem to calculate w and b based on the given training

instances. Let ej be an error variable, which is the approximate error for the jth

training instance. Let γ be a regularization parameter, the optimization problem can

be formulated in the primal weight space as follows.

min
w,b,e

JP (w, e) =
1

2
wT w + γ

1

2

N
∑

j=1

e2
j ,

subject to yj = wT ϕ(xj) + b + ej , j = 1, . . . , N. (3.8)

When ph becomes infinite, it is unsolvable in the primal weight space, because the

dimension of w is infinite. The problem can be solved by converting the problem into

a dual space. First, construct the Lagrangian as in Equation (3.9).

L(w, b, e; α) = JP (w, e) −
N

∑

j=1

αj{wTϕ(xj) + b + ej − yj}, (3.9)

where αj are Lagrange multipliers. The dual problem is then derived as in Equa-

tion (3.10) by eliminating the variables w and e under the conditions for optimality.
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, (3.10)

where y =< y1; . . . ; yN >, 1v =< 1; . . . ; 1 > , α = < α1; . . . ; αN >, and the kernel

function is given in Equation (3.11).
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Ωij = ϕ(xi)
T ϕ(xj) = K(xi, xj), i, j = 1, . . . , N. (3.11)

Then the estimated function can be derived as in Equation (3.12).

y(x) =
N

∑

j=1

αjK(x, xj) + b. (3.12)

The kernel trick enables us to map the input vector into a huge dimensional feature

space without explicitly computing in that space. The kernel function should satisfy

Mercer’s condition (Suykens, Gestel, Brabanter, Moor, and Vandewalle 2002). The

most commonly used kernel functions are linear kernel, polynomial kernel, radial basis

function (RBF) kernel, and multilayer perception (MLP) kernel as described below.

• Linear kernel: K(xi, xj) = xi
T xj .

• Polynomial kernel: K(xi, xj) = (xi
T xj + t)

m
, t ≥ 0, where t is the intercept

and m is the degree of the polynomial.

• RBF kernel: K(xi, xj) = exp(−‖xi − xj‖2
2/σ

2), where σ is the variance of the

Gaussian kernel.

• MLP kernel: K(xi, xj) = tanh(sxi
T xj + θ), where s and θ are tuning param-

eters.

In our study, the RBF kernel is used because of its suitability in non-linear mod-

eling and the time series prediction application. There are two tuning parameters, γ

and σ, which need to be decided. γ is the regularization factor, which determines the

trade-off between the training error minimization and smoothness of the estimated
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function. σ is the bandwidth of the Gaussian kernel. The values of these two param-

eters are usually selected empirically in different ways. In Chapter 5, we propose a

novel heuristic method of tuning these two parameters utilizing information extracted

from the training time series. More details about the LS-SVM method can be found

in (Suykens, Gestel, Brabanter, Moor, and Vandewalle 2002).

3.4 k-NN Based LS-SVM Method

The most common way of training a prediction model is to use the entire available

training dataset as the input and treat every instance in the dataset equally. It is

observed that training from the instances, which have similar inputs, could render

a better model, and it better captures the correlation between the inputs and the

corresponding outputs. Therefore, instead of using the whole training dataset, we

bring in the k-NN method to dynamically select training instances from the selected

training dataset SD, which are closer to the testing instance, to train an LS-SVM

model for each testing instance. To our best knowledge, this is the first attempt

to do instance selection using the k-NN method in long-term time series prediction

modeling. The proposed approach is a lazy algorithm. A prediction is made only after

a testing instance comes. We propose a new distance function, which incorporates

the Euclidean distance and the dissimilarity of the trend of a time series, to calculate

the distance of the instances (Huang and Shyu 2012). Figure 3.6 shows the structure

of the proposed k-NN based LS-SVM for long-term time series prediction.

The inputs to this component are the selected training dataset SD generated by

the collaborative training dataset selection component and the testing time series td.
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Figure 3.6: k-NN Based LS-SVM Long-Term Time Series Prediction

The output of this component is the predicted values for the testing time series. The

k-NN based LS-SVM for long-term time series prediction component contains four

steps.

1. Step one: Obtain the hyper-parameters tuned by the method described in Chap-

ter 5 using the first set of the training dataset. We obtain the regularization

factor γ and kernel parameter σ, which are customized according to the informa-

tion extracted from the current time series, prior to doing time series prediction.

The tuning process is done only once.

The parameter tuning for LS-SVM is crucial. Both kernel parameter and reg-

ularization parameter impact the performance significantly. However, no con-

sensus has been reached so far regarding how to decide the reasonable searching

range and how to adaptively locate the optimal combination of the parameter
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values for different datasets. In Chapter 5, we propose a heuristic way of tun-

ing the parameters of LS-SVM with RBF kernel for regression modeling, which

include the kernel parameter σ and the regularization factor γ.

2. Step two: k-nearest neighbors are selected from the training dataset SD for

each instance in the testing dataset, using a proposed distance measure, which

is detailed in the rest of this section. The distance measure considers both the

Euclidean distance and the dissimilarity of the trend between the time series.

The trend of a time series is described by a vector which is the first order

difference of the time series. The selected training dataset SD is updated for

each testing instance. This strategy makes sure that the model is adaptive to

the latest pattern of the time series. The selected k instances form the training

dataset D′ for LS-SVM method.

The integration of the k-NN approach is based upon the assumption that similar

inputs commonly share a closer model to correlate with the corresponding out-

puts. Instead of using the whole training dataset to train an LS-SVM model,

it would be more precise and prudent to train a prediction model from the

instances in the training dataset that are closer to the testing instance. For

each testing instance, the prediction model is re-trained, which makes it more

adaptive than using a constant model. Meanwhile, k is usually much smaller

than the number of instances in the training dataset. By selecting only those k

training instances that are closest to the testing instance, it reduces the size of

the input data for training the LS-SVM regressor, thus dramatically decreacing

the complexity of building the LS-SVM regressor. Even though the prediction
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model needs to be re-trained for each testing instance, the time consumption is

still acceptable, and this claim has been validated by experimental results.

3. Step three: Take the reduced training dataset D′ to train an LS-SVM regressor

for each prediction horizon respectively based on the direct prediction strategy

described in Section 3.3.1. For an n-step ahead time series prediction problem, n

regressors would be trained. n regressors are taking the same set of the previous

true values as the inputs, while generating different outputs according to the

prediction horizon.

4. Step four: Take the testing instance as the input to the obtained n LS-SVM

regressors and retrieve n predicted values. This step is fast and straightforward.

The testing instance is utilized first to search for its k nearest neighbors from

the training dataset to form a reduced training dataset, and then it is utilized

here as the input to the LS-SVM regressors. As it is shown in Fig. 3.6, there

are two flows coming from testing time series td towards k-NN and LS-SVM

regressor components respectively.

The length of the input vector in each instance is p, while we use the most recent

p1 values as the input to this k-NN selection component, where p1 ≤ p. Similarly,

we use the most recent p2 values as the input to the following LS-SVM regressor

component, where p2 ≤ p and p = MAX(p1, p2).

Let the jth row in SD be < xj , xj+1, . . ., xj+p−1, xj+p, . . ., xj+p+n−1 >, where

1 ≤ j ≤ size(SD), n is the prediction horizon. The first p values in the row is the

corresponding input vector: < xj , xj+1, . . ., xj+p−1 >. The input vector to k-NN
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selection component is < xj+p−p1
, xj+p−p1+1, . . ., xj+p−1 >, which is the last p1 values

of the input vector to the system. Its first order difference is

< zj+p−p1
, . . . , zj+p−2 >=< xj+p−p1+1 − xj+p−p1

, . . . , xj+p−1 − xj+p−2 > . (3.13)

The size of < zj+p−p1
, . . . , zj+p−2 > is 1 × (p1 − 1).

Given a testing input vector < xT+1 , . . ., xT+p−1, xT+p >, which starts at time

point T + 1. The last p1 values will be used here, i.e., < xT+p−p1+1 , . . ., xT+p−1,

xT+p >. We first calculate its Euclidean distance with each training instance, denoted

as E(j) according to Equation (3.14).

E(j) =

√

(xT+p−p1+1 − xj+p−p1
)2 + . . . + (xT+p − xj+p−1)

2
. (3.14)

The first order difference of the testing input vector is < zT+p−p1+1 , . . ., zT+p−1

>=< xT+p−p1+2 − xT+p−p1+1, . . .,xT+p − xT+p−1 >, whose size is 1 × (p1 − 1) as well.

Calculate the Euclidean distance between the differential testing input vector and

each differential training input vector, denoted as F (j), according to Equation (3.15)

F (j) =

√

(zT+p−p1+1 − zj+p−p1
)2 + . . . + (zT+p−1 − zj+p−2)

2
. (3.15)

The length of vector E and vector F is size(SD), which varies from patient to

patient. We use a combination of the normalized E and F as the distance metric for

the k-NN method. The distance Dis is defined by Equation (3.16).

Dis(j) =
E(j) − MIN(E)

MAX(E) − MIN(E)
+

F (j) − MIN(F )

MAX(F ) − MIN(F )
, (3.16)

where MAX(E), MIN(E), MAX(F ), and MIN(F ) are the maximum and minimum

values for E and F , respectively. k instances corresponding to the smallest distance

measures are selected as a reduced training dataset for LS-SVM.
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Here, we give a simple example to demonstrate how to select the instances. Let

p = 2 and n = 3, which means that it takes the previous 2 values as the input, and

predict 3 step ahead. The selected training dataset SD is given in Table 3.1.

Table 3.1: An Example for Instance Selection
1 2 4 6 5
2 4 6 5 3
4 6 5 3 1
6 5 3 1 1

Set p1 = 2 and k = 2. Given a testing input vector: < 2, 3 >, E(j) is calcu-

lated, i.e., the Euclidean distance between the testing input vector and each training

instance.

E(1) =
√

(2 − 1)2 + (3 − 2)2 =
√

2,

E(2) =
√

(2 − 2)2 + (3 − 4)2 = 1,

E(3) =
√

(2 − 4)2 + (3 − 6)2 =
√

13,

E(4) =
√

(2 − 6)2 + (3 − 5)2 =
√

20.

The first order difference of the testing input vector is < 3−2 >=< 1 >. Calculate

F (j), i.e., the Euclidean distance between the differential testing input vector and

each differential training input vector.

F (1) =
√

(1 − (2 − 1))2 = 0,

F (2) =
√

(1 − (4 − 2))2 = 1,

F (3) =
√

(1 − (6 − 4))2 = 1,

F (4) =
√

(1 − (5 − 6))2 = 2.

Hence, we have MAX(E) =
√

20, MIN(E) = 1, MAX(F ) = 2, and MIN(F ) =

0. Calculate Dis(j).

Dis(1) =
√

2−1√
20−1

+ 0−0
2−0

= 0.12,
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Dis(2) = 1−1√
20−1

+ 1−0
2−0

= 0.5,

Dis(3) =
√

13−1√
20−1

+ 1−0
2−0

= 1.25,

Dis(4) =
√

20−1√
20−1

+ 2−0
2−0

= 2.

Given k = 2, so 2 instances corresponding to the smallest distance are selected as

the reduced training dataset. In this example, the first two instances, with distance

measure at 0.12 and 0.5, respectively, are selected as the training dataset to train

LS-SVM.

3.5 Post-Prediction Process

The post-prediction process contains three components: boundary constraint, multi-

value integration and vertical correction components, as shown in Fig. 3.7. They

are used to post-process the prediction results, which further improve the prediction

precision, and make sure that the results are valid.

3.5.1 Boundary Constraint Component

When the prediction horizon is very large, the prediction model might not be able to

capture the changing patterns of the time series very well. The prediction model is

fitted to the training data, and by carrying on the same patterns it might generate

a value which is too small or too large. For some real world time series data, their

values should fall within a certain reasonable range. Also, we do not expect sharp

pulses in the prediction result. Therefore, a boundary constraint component is used

to bound the predicted values rendered by LS-SVM regressors. We set the upper and

lower bounds, denoted as UpB and LowB, respectively, based on the values in the
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Figure 3.7: Post-Prediction Process

training time series d.

UpB = MAX(d) + 0.02 × STD(d); (3.17)

LowB = MIN(d) − 0.02 × STD(d). (3.18)

Here, MAX(d) and MIN(d) are the maximum and minimum values of the training

time series d, and STD(d) is the standard deviation of d. Thus the boundaries are

set to the maximum and minimum values of the training time series data with a

moderate extension, where 0.02 is selected empirically. If a predicted value is larger

than the upper bound or smaller than the lower bound, we reset the value to the

upper bound or lower bound value, respectively. Otherwise, the predicted value is

rendered as the final output. Therefore, the final output of the system is limited to

the range of [MIN(d) − 0.02 × STD(d), MAX(d) + 0.02 × STD(d)]. The boundary
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is set dynamically according the updating training time series data, and it is domain

knowledge free.

3.5.2 Multi-Value Integration Component

There are some existing studies on combining prediction results from individual mod-

els. Due to fact that there is no single prediction model that is able to outperform

all other methods on any time series, a combination of multiple models becomes the

solution to make the prediction model more general, which is able to predict well for a

group of time series. There are different opinions on which types of the models should

be combined, different methods with distinct nature or very similar models. Some

studies claim that these is not much value added in combining the models which are

not significantly different, because the models access the same information set and

capture similar patterns (Clement and Hendry 1998). On the contrary some other

researchers claim that it is also important to combine forecasts from very similar

models (Zou and Yang 2004). We agree that even when very similar models are com-

bined, the model uncertainty could be generally reduced. Some of our primary study

has validated this claim (Huang and Shyu 2012).

For an n-step ahead prediction problem, the k-NN based LS-SVM component is set

to generate a prediction over a horizon n′, which is larger than the required prediction

horizon n, i.e., n′ > n. Accordingly, n′ regressors are trained in order to predict n′-

step ahead. Each predicted value is corresponding to a unique LS-SVM regressor. n′

LS-SVM regressors are trained using the same input vectors, but different outputs as

described in Equation (3.7). Let the current time be T . The testing input vector is
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< xT−p+1 , . . ., xT−1, xT >, and the length of the vector is p. k-NN based LS-SVM

component generates n′ predicted values, which can be denoted as < xT+1 , . . ., xT+n,

. . ., xT+n′ >, where the prediction value at time T + n is the expected output. The

prediction for the value at time T +n is also conducted in the previous n′ −n testing

instances. Instead of simply returning xT+n as the output for prediction at horizon n,

we integrate the previous h predictions of the time series value at time T + n, where

0 ≤ h ≤ n′ − n, together with the current prediction xT+n by using an autoregressive

model. The autoregressive model takes in total h + 1 predicted values as input and

generates the final output. In order to better illustrate how the approach works, an

example is given in Table 3.2.

Table 3.2: An Example for Multi-Value Integration Component
1 x1 x2 x3 x4 x5 x6

2 x2 x3 x′
4 x′

5 x′
6 x

′

7

3 x3 x4 x′′
5 x′′

6 x
′′

7
x′′

8

4 x4 x5 x′′′
6 x

′′′

7
x′′′

8 x′′′
9

In this example, the first column is the instance index. The values of the param-

eters are p = 2, n = 2, n′ = 4, and T = 5, which means that the prediction takes the

past 2 values (p = 2) as the input vector, and predicts the next 4 values (n′ = 4),

while the goal is to predict the next 2 values (n = 2). The current testing instance is

instance 4, and the input vector is (xT−1, xT ) = (x4, x5). h can be an integer within

the range of [0, 2]. Let the autoregressive model that is employed to combine the

predicted values be fa.

• If h = 0, it renders the prediction value at time T + n = 7, i.e., x′′′
7 as the final

prediction value at horizon n = 2.
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• If h = 1, it integrates the previous one prediction of the time series value at

time T + n = 7, i.e., x′′
7, with the current prediction x′′′

7 as the final output,

which is fa(x
′′
7, x

′′′
7 ).

• If h = 2, it integrates the previous two predictions of the time series value at

time T + n = 7 with the current prediction x′′′
7 as the final output, which is

fa(x
′
7, x

′′
7, x

′′′
7 ).

The autoregressive model is a linear prediction formula that is commonly used

to predict an output of a system based on the previous outputs. In the proposed

framework, parameter h determines the order of the autoregressive model. For a

given h, the corresponding order of the autoregressive model should be h + 1. An

autoregressive model of order h + 1 is defined in Equation (3.19).

xt = c +

h+1
∑

i=1

ϕixt−i + ε, (3.19)

where ϕ1, · · · , ϕh+1 are the parameters of the model, c is a constant and ε is white

noise. There are many ways to estimate the coefficients. In the experiments, we

estimate the coefficients by minimizing the root mean square error in the training

process. The training instances for the autoregressive model are formed by the pre-

dicted values (as the input) and the corresponding true value (as the output). Take

the dataset given in Table 3.2 as an example, and let h be 2. Accordingly, the order

of the autoregressive model is 3. For instance, the input of one training instance

is (x′
6, x′′

6, x′′′
6 ), and the output is the real value at time 6, which is x6. In reality,

there could be many more training instances with the progression of time. The time

series is much longer than the one given in this simple example. A set of the training
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instances can be used to estimate the coefficients for the autoregressive model. Given

an input of a testing instance, for example, (x′
7, x′′

7, x′′′
7 ), the trained autoregressive

model fa returns a value as the final prediction for time 7.

The input values to this integration component are all predicted values from the

k-NN based LS-SVM method, and thus a linear function is more suitable to combine

these values than a non-linear function. We compared autoregressive model with

some other methods, such as LS-SVM, nonlinear autoregressive moving average, and

the autoregressive model is able to achieve the highest prediction precision.

3.5.3 Vertical Correction Component

The proposed vertical correction component contains two steps. The first step is

to smooth the prediction results from the multi-value integration component. Ac-

cording to the proposed approach, the prediction model is retrained at each second.

Smoothing can reduce the inconsistency of the models. We employed the prepro-

cessing technique introduced in Section 3.2 to do smoothing, which combines data

subsampling, peak detection and interpolation processes.

The second step is to smooth out the sharp pulses and peaks with very low heights.

It is based on the domain knowledge that for a normal contraction, the corresponding

uterine pressure peak should exceed certain height and duration. Therefore, we ignore

the vibrations which are not corresponding to contractions. The peaks are detected

using the peak detection method introduced in Section 3.2. Three conditions are set

to determine if a peak should be smoothed out or not.
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• Condition 1: if the height of a peak is lower than a given threshold, minHeight,

it is considered as candidate noise.

• Condition 2: if the width of a peak is smaller than a given threshold, minWidth,

it is considered as candidate noise.

• Condition 3: for the candidate noise that satisfies either of the previous con-

ditions, if the starting point value of the peak is smaller than a threshold,

minSPV , it is considered as noise.

To smooth out a noise peak, we reset the peak area to be the value of the starting

point value of the peak. Finally, the output from the vertical correction component

is the final prediction results that the framework generates as the output. They are

the sequences of the intrauterine pressure predicted multiple seconds ahead.

3.6 Framework Evaluation Criteria

To evaluate the performance of the prediction models, We employ two error measure-

ments, root mean squared error (RMSE) and symmetric mean absolute percentage

error (SMAPE).

Let X be the real time series, and X be the predicted time series obtained at

prediction horizon n. The length of both X and X is m. RMSE is the square root

of the variance, which is defined in Equation (3.20). RMSE is closely related to the

value range of the time series data.

RMSE =

√

∑m

t=1 (xt − xt)
2

m
. (3.20)
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In order to compare the performance over different datasets, we calculate SMAPE,

which is based on relative errors as defined in Equation (3.21). SMAPE is the mean

value of the difference between xt and xt divided by their average. It has a lower

bound and an upper bound at 0 and 2, respectively.

SMAPE =
1

m

m
∑

t=1

|xt − xt|
(xt + xt)/2

. (3.21)

A fit measure is used as one of the measurements as well to evaluate how fit the

prediction is to the real time series. Let the mean value of X be mean(X). The fit

measure is defined in Equation (3.22).

FIT = 100 × (1 − ‖X − X‖2

‖X − mean(X) · 1v‖2

)%, (3.22)

where 1v =< 1; . . . ; 1 >, and the length of 1v is m. FIT reaches the maximum value

(100%) when the prediction X exactly matches with the real time series X, i.e., the

prediction error RMSE is 0. Other then this ideal situation, FIT is always a number

smaller than 100%. A larger FIT value implies a better performance.

The purpose of the prediction is to predict the starting points of the coming

contractions, so as to give the signal for analgesia injection ahead of time to relieve

the labor pain. Therefore, we also conducted comparison experiments to evaluate the

abilities of the prediction models in predicting the starting points of the contractions.

In order to make the comparison fair, we applied the post-prediction process to every

compared prediction model. Each of the testing time series contains more than one

contraction. The prediction for each contraction is assigned an accuracy weight based

on the distance between the predicted starting point and the true starting point of the

contraction, and then the average of the weights for all the contractions in a testing
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time series is calculated as the accuracy measure. Table 3.3 shows the weights for

different distance ranges, which are defined based on domain knowledge and empirical

studies.

Table 3.3: Weight Distance Mapping Table

Distance (de) (s) Weight
0 ≤ de < 10 1
10 ≤ de < 20 0.8
20 ≤ de < 30 0.6
30 ≤ de < 40 0.4
40 ≤ de < 50 0.2

de ≥ 50 0

For the error measurements, including RMSE and SMAPE, when the values are

smaller the prediction models perform better. Contrarily, for the fit and accuracy

measurement, when the values are larger, the prediction models perform better.
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CHAPTER 4

Patient Selection and Collaborative

Training Dataset Selection

In this chapter, we introduce a discretization method for discretizing the numeri-

cal contraction features (height and period), describe a sequential association rule

mining approach for mining the frequent sequential contraction patterns, present the

patient selection strategy, and finally, specify the process of the rule matching based

collaborative training dataset selection.

4.1 Discretization

A contraction can be described by the corresponding peak height and period. The

features are extracted using the peak detection method introduced in Section 3.2.

The contraction pattern is determined by the combination of both the height and the

period of a contraction. The aim of sequential association rule mining algorithm is

to discover interesting sequential relationships between categorical variables in large

databases. The features extracted for contractions are numerical. In order to dis-

cover the sequential association relationships among contractions, it is necessary to

discretize the features.

60
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The equal-width discretization method is adopted due to the fact that the dis-

cretization method should facilitate the association rule mining process. On one

hand, there should be a certain number of rules generated. On the other hand, the

generated rules should be meaningful and reasonable. Even though the equal-width

discretization method is relatively straightforward, it suits our application better than

other discretization methods. Table 4.1 and Table 4.2 show the mapping tables used

in the experiments, which are determined based on domain knowledge. Contractions

detected from both the training time series d and the tracings in the historical patient

information HI are discretized using the same mapping table.

Table 4.1: Discretization Mapping Table for Height
Height (ht) range (mmHg) Nominal marker

ht < 40 a
40 ≤ ht < 55 b
55 ≤ ht < 70 c
70 ≤ ht < 85 d
85 ≤ ht < 100 e

ht ≥ 100 f

Table 4.2: Discretization Mapping Table for Period
Period (pd) range (s) Nominal marker

pd < 25 A
25 ≤ pd < 85 B
85 ≤ pd < 145 C
145 ≤ pd < 205 D
205 ≤ pd < 265 E
265 ≤ pd < 325 F
325 ≤ pd < 385 G

pd ≥ 385 H

For the intrauterine pressure time series given in Fig. 3.3, the period is 5 minutes,

(i.e., 300 seconds). Consequently, the period is discretized as ‘F’. Let the height of
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the peak be 75 mmHg, then it is discretized as ‘d’. Therefore, the contraction shown

in Fig. 3.3 can be described as ‘dF’. For consecutive contractions one after the other,

they can be represented as a sequence of paired letters in the similar manner, i.e., a

discretized contraction feature series.

4.2 Sequential Association Rule Mining Algorithm

A brief introduction about the basic concepts for association rule mining algorithm

is first given here. Let I={I1, I2,· · · , Im} be a set of m distinct items, T be a

transaction that contains a set of items such that T ⊆ I, and D be a database with

different transaction records T s. An association rule is an implication in the form

of X → Y , where X ⊂ I and Y ⊂ I are sets of items, which are called itemsets,

and X ∩ Y = Ø. X is called antecedent/condition, and Y is called consequent. The

number of items in an itemset is called the length of an itemset. Itemsets of length

m are called m-itemsets. The rule implies that the transactions of the database that

contain X tend to contain Y .

There are two important basic measures for association rules, support (sup) and

confidence (conf). Support determines how often a rule is applicable to a given

database, while confidence determines how frequently Y appears in transactions that

contain X. Confidence is a measure of the strength of the association rules. sup and

conf are calculated using Equation (4.1) and Equation (4.2), respectively.

sup(X → Y ) =
σ(X ∪ Y )

N
; (4.1)

conf(X → Y ) =
σ(X ∪ Y )

σ(X)
, (4.2)
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where N is the total number of transactions in the given database, σ(X ∪ Y ) is

the number of transactions that contain both X and Y , and σ(X) is the number of

transactions that contain X. For example, if the support of an item is 2%, it means

only 2 percent of the transactions contain this item. If the confidence of an association

rule X → Y is 80%, it means that 80% of the transactions that contain X contain

Y as well. Since the database is usually large, there could be many rules generated.

We are only interested in those frequently appeared itemsets and rules with high

confidence measures. Therefore, thresholds of support and confidence are predefined

to discard those rules that are not so interesting or useful. The two thresholds are

minimal support (minSup) and minimal confidence (minConf), respectively.

In order to discover interesting sequential patterns from the intrauterine pressure

time series, we develop our own sequential association rule mining algorithm to cater

the needs. In our approach, an item is one contraction, and it contains two letters,

representing its height and period, respectively. The sequential association rule min-

ing algorithm takes the discretized contraction feature series derived from a group of

historical patient tracings as the input, and returns a set of rules as the output.

We first search for the frequent sequential itemsets for each individual patient

separately, called local frequent sequential itemsets, and then generate the overall

sequential itemsets, called global frequent sequential itemsets, based on the local fre-

quent sequential itemsets. Three metrics are defined below to evaluate the interest of

a sequential association rule in the form of wX → yZ, where w and y are discretized

heights, X and Z are discretized periods.
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Definition 1 supL: the local support. Let Nc be the total number of contractions in

one patient’s intrauterine pressure tracing. Let σ(wX ∪ yZ) be the occurrences of the

local sequential itemset wX ∪ yZ. supL is defined in Equation (4.3).

supL(wX → yZ) =
σ(wX ∪ yZ)

Nc

. (4.3)

Definition 2 supG: the global support. Let M be the total number of patients. Let

Np be the number of patients who have the sequential itemset as one of the local

frequent itemsets. supG is defined in Equation (4.4).

supG(wX → yZ) =
Np

M
. (4.4)

Definition 3 PS: PS measure of a rule wX → yZ, which is derived from a global

frequent sequential itemset. Let P (wX ∪ yZ) be the probability of wX ∪ yZ. Let

P (wX) and P (yZ) be the probabilities of wX and yZ, respectively. PS is defined in

Equation (4.5).

PS(wX → yZ) = P (wX ∪ yZ) − P (wX)P (yZ). (4.5)

The PS metric was first introduced by Piatetsky-Shapiro (1991). PS is 0 if the

variables, wX and yZ, are statistically independent. It is monotonically increasing if

the variables occur more often together, and it is monotonically decreasing if one of

the variables alone occurs more often. The PS metric is employed here to evaluate

the strength of the sequential association rule. Accordingly, three thresholds should

be predefined, which are listed below.

Definition 4 minSupL: minimum support for deciding local frequent sequential item-

sets. If the frequency of one itemset in one patient’s discretized tracing, i.e., supL, is
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no less than minSupL, the itemset is considered as a local frequent sequential itemset

of the patient.

Definition 5 minSupG: minimum support for deciding global frequent sequential

itemsets. If the percentage of patients who share one local frequent sequential itemset,

i.e., supG, is no less than minSupG, the itemset is considered as a global frequent

sequential itemset of the patient.

Definition 6 minPS: minimum PS measure. If the PS measure of a sequential as-

sociation rule derived from a global frequent sequential itemset is no less than minPS,

the rule is considered as an interesting rule.

The proposed sequential association rule mining approach contains three steps.

First, generate local frequent sequential itemsets. Given the local support threshold,

we first find the items that occur no less than minSupL in each patient’s tracing. The

set of candidate m-itemsets is generated by connecting the frequent (m-1)-itemsets

generated in the previous iteration. We bring in the principle of the Apriori algorithm

to reduce the computation cost of the iterations, which is that if an itemset is frequent,

all of its subsets must also be frequent. It significantly reduces the number of the

generated candidate m-itemsets. If the local support of one candidate m-itemset is

no less than minSupL, it is recognized as a frequent local m-itemset. For sequential

association rule mining, the sequence of the occurrence is important. For example,

a 2-itemset ‘cAdB’ is different from the 2-itemset ‘dBcA’. Their frequency should be

calculated separately. As mentioned earlier, an item in our problem contains two

letters, representing the peak height and period, respectively. In the given example,
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‘cA’ represents one contraction, where ‘c’ specifies the discretized height and ‘A’

specifies the discretized period. Similarly, ‘dB’ represents another contraction with

height in range ‘d’ and period in range ‘B’.

Second, generate global frequent sequential itemsets. Combine the local frequent

sequential itemsets derived from all the historical patient tracings, and generate can-

didate global frequent m-itemsets based on local frequent m-itemsets. If the global

support of one candidate m-itemset is no less than minSupG, it is recognized as a

frequent global m-itemset.

Third, generate sequential association rules from the frequent global itemsets. In

this algorithm, only one item consequent sequential association rules are generated,

i.e., one contraction in the consequent part. This is because we are trying to predict

the occurrence of the next one coming contraction. For example, for a frequent

global 3-itemset ‘cAdBcC’, we only generate the rule cA∪dB → cC, but not the rule

cA → dB∪cC. Again, the sequence of the items differentiates the rules. For example,

cA ∪ dB → cC is different from dB ∪ cA → cC. If the PS measure of one derived

rule is no less than minPS, it is recognized as an interesting sequential association

rule.

The interesting sequential association rules of various lengths form the rule set R.

The rules are sorted according to their PS values in the descending order. A larger

PS value means that the rule is more interesting, i.e., when the condition part of the

rule occurs, the chance of the consequent part occurring as well is higher.
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4.3 Patient Selection

To the best of our knowledge, there are no prior studies that try to analyze how

to link demographic or obstetrical features with the uterine contraction pattern in

labor. Even though obstetricians have some empirical observation on how the de-

mographic and obstetrical features impact the uterine contraction pattern, systemic

and theoretical study is challenging due to the difficulties in formulizing the problem.

Sequential pattern analysis on intrauterine pressure tracings provides a way to char-

acterize the pattern of contractions. This enables the analysis on whether and how

the demographic and obstetrical features impact the sequential uterine contraction

pattern.

Based on domain knowledge, we summarize some demographic and obstetrical

features that might have some impacts on the uterine contraction pattern in labor.

The features include maternal age, body mass index (BMI), gestational age, number

of pregnancies, living children pregnancy history, labor anesthesia, and indication of

oxytocin. The meaning of each variable and its possible values are given below.

• The maternal age is a numerical value, and it is stored as an integer in the

database where we retrieve the information from. The maternal age determines

the contractility of the muscles, so it might influence the uterine contraction

pattern as well.

• The BMI is a heuristic proxy for human body fat based on an individual’s

weight and height. The BMI is a numerical value as well.
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• The gestational age is defined as the time elapsed since 14 days prior to fertil-

ization, and it is usually recorded in terms of the number of weeks. For normal

pregnancies, women get into labor when the gestational age reaches 38 weeks

to 40 weeks. If the gestational age is less than 38 weeks, it is considered as

pre-term labor. If the gestational age is larger than 40 weeks, it is considered

as post-term labor.

• The number of pregnancies means the number of babies that the parturient

is carrying. For example, if a woman is pregnant with twins, the number of

pregnancies equals 2.

• The living children pregnancy history indicates if the woman have ever given

birth before. The multiparous tend to have different contraction pattern from

the primiparous, because the previous pregnancy influences the contractility of

the myometrium. Therefore, we differentiate the multiparous from the primi-

parous.

• For labor anesthesia, most of the women in the study have chosen epidural,

and some other chose anesthesia other than epidural, for example, intravenous

sedation or no anesthesia.

• Oxytocin can be used for induction or labor augmentation. The amount of

oxytocin for induction is much larger than it is for augmentation. Oxytocin

promotes and accelerates uterine contraction.

We divide the patients into several groups with different ranges of value for one

feature, and then analyze the sequential uterine contraction pattern of each group.
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If the sequential uterine contraction patterns of these groups are different, it means

that this feature has a strong impact or determines the sequential uterine contraction

pattern. Thus the feature is kept for grouping the patients for later analysis; oth-

erwise, the feature is discarded. This process is repeated for each of the considered

feature.

Based on the analysis on 611 patients’ records, we observe that maternal age,

gestational age, labor anesthesia, and indication of oxytocin, have an impact on the

sequential uterine contraction pattern, and the impact is more significant than the one

generated by the rest of the features. Therefore, these four features are used to select

patients for later analysis. Based on the generated sequential uterine contraction

pattern and domain knowledge, we use three of the chosen features and design a tree,

as shown in Fig. 4.1, to classify the patients in historical patient information HI into

7 groups. The three features are gestational age, labor anesthesia, and indication of

oxytocin.

It is believed that induced labor significantly differs from spontaneous labor. A

large amount of oxytocin alters how frequently the uterus contracts. The retrieved

sequential uterine contraction patterns are also different. Therefore, we choose in-

dication for oxytocin as the root node to separate the patients who had induction

from the patients who gave natural birth. For patients who did not experience in-

duction, labor anesthesia is used to differentiate the patients who had epidural from

the patients who had analgesic other than epidural. For induced labor, it usually

takes a longer time. All the patients who had induced labor chose to have epidural.

Therefore, we omit the labor anesthesia node in the left branch. We further divide

the groups by gestational age to differentiate pre-term labor (gestational age < 38)
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Figure 4.1: A Tree for Patient Selection

from term and post-term labor (gestational age ≥ 38). For patients who gave nat-

ural birth and had epidural (majority of patients are in this case), we also separate

term labor (38 ≤ gestational age ≤ 40) from post-term labor (gestational age > 40).

Accordingly, we can divide the patients into 7 groups based on this built tree.

The flowchart for patient selection is shown in Fig. 4.2. The inputs are historical

patient information HI and the current patient’s demographic and obstetrical infor-

mation. HI includes multiple past patients’ preprocessed intrauterine pressure time

series and their demographic and obstetrical information. The patients in HI are

divided into 7 groups according to the tree shown in Fig. 4.1. The output is selected

historical patient tracing HT . The purpose of patient selection is to select some pa-



www.manaraa.com

71

tients who share similar demographic and obstetrical features with the current patient

of interest. Based on our analysis, the chosen demographic and obstetrical features

have a strong impact on the sequential contraction patterns.

Figure 4.2: Patient Selection Component

First, we determine which group the current patient should belong to according

to her gestational age, labor anesthesia, and indication of oxytocin using the tree

in Fig. 4.1. Let the current patient belong to group i, where 1 ≤ i ≤ 7. Second,

select nPatient patients from group i whose age are closest to the current patient’s

age. Thus, four features in total are used in this selection, which are maternal age,

gestational age, labor anesthesia, and indication of oxytocin. The selected patients’

intrauterine tracings are the output of this component, and are passed to collaborative

training dataset selection component as one of its inputs to form a training dataset

for building the prediction models.
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4.4 Collaborative Training Dataset Selection

Collaborative filtering (CF) is a technique that uses the known preferences of a group

of users to make recommendations or predictions of the unknown preferences for

other users (Su and Khoshgoftaar 2009). In our framework, a collaborative filtering

component is proposed to use the known sequential contraction patterns of a group

of past patients to assist in the prediction of unknown upcoming contraction for

other patients. The purpose of the collaborative training dataset selection process is

to selectively employ available contractions from both the selected historical patient

tracings and the current patient’s most recent intrauterine pressure tracing to train

the prediction model. This dynamic selection makes the prediction model adaptive

to the changing contraction pattern of the patient. Figure 4.3 shows the processes of

the collaborative training dataset selection component (enclosed by the dashed lines).

This component takes 1) the current patient’s training time series d and 2) selected

historical patient tracings HT as the inputs, and gives selected training dataset (SD)

as the output.

The dataset selection is based on a rule matching process. The rule matching

process takes the inputs from two branches as shown in Fig. 4.3. The right branch

derives sequential association rules from the selected historical patient tracings HT .

For each time series in HT , we detect all the contractions and corresponding peak

height and period, and then discretize these features as described in Section 4.1 for

the rule mining purpose. The sequential association rule mining method described in

Section 4.2 is used to extract the interesting rule set R. In the left branch, training

time series d is the intrauterine pressure sequence of the current patient’s most recent
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Figure 4.3: Collaborative Training Dataset Selection Component

CN contractions. We measure the peak height and contraction period, and discretize

them in the same way as the process in the right branch.

The current patient’s recent contraction pattern is compared with the condition

part of the generated sequential rules. If there is a matched rule, tracings of the same

number (CN) of contractions from the historical patient tracings is selected (which

correspond to the consequent part of the rule), and is combined with the current

patient’s most recent CN contractions tracing in d to form the selected training

dataset SD. However, if no matched rule is found, the intrauterine pressure sequence

of the current patient’s most recent contractions in d is employed as the training

dataset SD.
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The rules in R are sorted according to their PS values in the descending order.

The maximum length of the rules, maxL, is dependent on the sequential pattern of

the historical patient tracings. Because we always keep one item in the consequent

part, accordingly, the maximum length of the rules is maxL− 1. On the other hand,

there are CN contractions in the training time series d. The rule matching process is

to compare the current patient’s recent contraction pattern with the condition part

of the generated sequential rules. Consequently, the maximum searching range is

min(maxL − 1, CN), i.e., the possible maximum length of the condition part of a

matched rule is the smaller value between maxL − 1 and CN .

The first matched rule is kept for instance selection, and then it stops looking for

other matched rules. If no matched rule is found after searching through the whole

rule set, the intrauterine pressure sequence of the current patient’s most recent CN

contractions in d is employed to form the selected training dataset using a sliding

window technique. Sliding window technique is used to prepare training and testing

instances for the prediction model. Let the length of the time series d be T length.

The sliding window approach is used to re-align the one-dimensional time series into a

matrix. The matrix, denoted as SD, is the selected training dataset, where each row

in the matrix is one training instance. The size of the sliding window is set to p + n,

and the size of SD is (T length−p−n+1)× (p+n), where the first p columns are the

input for training the models, the (p+ i)th column is the output for the model fi, and

n is the prediction horizon. An individual model is trained for each prediction horizon,

respectively to achieve higher prediction accuracy for long-term time series prediction.

For example, if we have a training time series d : {x1, x2, x3, x4, x5, x6, x7, x8}, where

T length = 8. Set p = 2 and n = 3. The corresponding matrix SD is shown in
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Table 4.3: An Example for Constructing Training Dataset
x1 x2 x3 x4 x5

x2 x3 x4 x5 x6

x3 x4 x5 x6 x7

x4 x5 x6 x7 x8

Table 4.3. The size of SD is (T length−p−n+1)× (p+n) = 4×5, where the first 2

columns are the input for training the models, and the (2+ i)th column is the output

for the model fi.

If there is a matched rule, i.e., the current patient’s contraction pattern matches

with the condition part of one rule, the same number (CN) of contraction tracings

from the historical patient tracings are selected (which correspond to the consequent

part of the rule), and are combined with the current patient’s most recent CN con-

tractions tracing in d to form the selected training dataset SD using the sliding

window technique described above in a similar manner. Usually, the number of con-

traction tracings that follow one interesting sequential association rule is much larger

than CN . We calculate the Euclidean distance between the current patient’s recent

feature vector and each of the feature vectors in the selected historical patient trac-

ings that follows the selected sequential association rule. The feature vector of one

contraction contains the normalized height and normalized period of the correspond-

ing peak. The CN contraction tracings with the smallest distance are selected. The

selected training dataset SD is then one of the inputs of the k-NN based LS-SVM

component for long-term time series prediction modeling.

By using this proposed collaborative filtering approach, we selectively utilize the

data from the selected historical patient tracings, and combine them with the cur-

rent patient’s most recent intrauterine contraction tracing. On one hand, a sequential
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association rule-based dataset selection enables incorporating the personalized recom-

mendations based on the pattern/knowledge learned from similar patients. On the

other hand, using the current patient’s most recent intrauterine contraction tracing

helps to discover and preserve the current patient’s own contraction patterns that are

different from the sequential contraction patterns learned from the database. The

combination of these two sources facilitates adaptive prediction, and enhances the

prediction ability and robustness of the obtained model.
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Heuristic Parameter Tuning for LS-SVM

Least squares support vector machines (LS-SVM) with radial basis function (RBF)

kernels are proven to be efficient regressors for time series (Suykens, Gestel, Bra-

banter, Moor, and Vandewalle 2002). LS-SVM and its variants are commonly used

in time series modeling and prediction (Rubio, Pomares, Rojas, and Herrera 2011;

Ormandi 2008). The main bottleneck of this group of approaches is that there are

two parameters to be tuned, i.e., the regularization parameter (γ) and the bandwidth

(σ) for the RBF kernel. The selection of the parameters for LS-SVM is crucial. Both

kernel parameter and regularization parameter may significantly impact the perfor-

mance. However, it has not reached a consensus yet in how to decide the reasonable

search ranges, and how to adaptively find the optimal combination of the parameter

values for different datasets. In this chapter, we present a novel heuristic method

to tune these two parameters utilizing the information extracted from the training

dataset (Huang, Shyu, and Tien 2012). As shown in Fig. 5.1, the heuristic parameter

tuning component takes training time series d as the input, and returns the selected

parameters to the LS-SVM regressor for modeling.

77
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Figure 5.1: Heuristic Parameter Tuning for LS-SVM

5.1 Related Work

As defined in Section 3.3.2, γ is the regularization factor, which determines the trade-

off between the training error minimization and smoothness of the estimated function.

σ is the bandwidth of the Gaussian kernel. The values of these two parameters are

usually selected empirically in different ways. What are the proper value ranges for

these two parameters to reach the optimal (or close to optimal) prediction results?

How to optimize the values of these two parameters for a specific time series? To

the best of our knowledge, no consensus has been reached so far to answer these

questions, though there have been some attempts to solve the problems.

Lendasse et al. (2005) propose a method to determine the γ value for a given σ

value. A nonparametric noise estimator (Jones 2004) is used to estimate the variance

of the noise in the outputs. Lendasse et al. (2005) propose an approach that keeps

increasing the value of γ until the training error does not exceed the noise variance

estimated by the nonparametric noise estimator. It is believed that a larger γ value

leads to a smaller training error. Therefore, when the value of γ is large enough, the



www.manaraa.com

79

training error could be less than the variance of the noise of the outputs. After the

γ value is selected for each given σ value, they calculate the leave-one-out (LOO)

error to estimate the modeling error with each parameter pair. The σ value and

the corresponding γ value, which minimize the LOO error, are selected. In their

approach, both the training error and the LOO error are calculated in two stages to

select these two parameters. This way of selecting the γ value is suspected to lead

to overfitting to the training dataset. Also, the authors do not specify the starting

values for σ and γ, and there is no discussion about how to select the range of σ,

and how to increase the value of γ. At the same time, it is a fact that the prediction

performance is closely related to the preset range of σ.

Another approach based on the nonparametric noise estimator is that the initial

value and the maximum value for the regularization factor γ is suggested to be the

ratio of the variance of the output to the estimated variance of the noise, and the

minimum γ value is set to 1 (Rubio, Pomares, Rojas, and Herrera 2011). It is an

interesting guess of the starting value for γ, and their experimental results demon-

strate that the value is a reasonable selection. The authors, however, do not give

sufficient explanations on the selection of the range of γ. The suggested range for σ is

[σmin, σmax], where σmin is the minimum distance between two training instances and

σmax is the maximum distance between two training instances. However, there is no

theoretical analysis on the reason behind this selection. In their paper, the evaluation

and comparison are done only experimentally.

The aforementioned studies mainly focus on the selection of the initial values

and/or the ranges of the parameters. On the other hand, other studies pay more at-

tention to how to search for the optimum in an efficient way. One trend is to use the
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traditional gradient-based approaches (Chang and Lin 2005). Another trend is to em-

ploy computational intelligence techniques, such as the particle swarm optimization

(PSO) (Guo, Yang, Wu, Wang, and Liang 2008) and evolution approach (Friedrichs

and Igel 2004) to determine the hyper-parameters. When there are more than two

hyper-parameters to be tuned, the selection of the parameters might be correlated

to each other. It is preferable to tune the multiple parameters at the same time.

For example, PSO considers a combination of the values of parameters as a point

in a hyperspace. It searches for the optima by updating generations and relocating

the positions of the points. In this way, all the parameters are updated at the same

time, correspondingly. This method is not restricted to any assumptions, and can be

generally applied to tune the parameters of different models.

In the following sections, a novel heuristic method is proposed to decide the search-

ing range of the Gaussian kernel parameter based on the information extracted from

the training time series. A strategy for efficiently locating the regularization factor is

also presented.

5.2 Selection of the Kernel Parameter σ

The kernel trick enables us to work in large dimensional feature spaces without doing

explicit computations in the large dimensional spaces (Suykens, Gestel, Brabanter,

Moor, and Vandewalle 2002). In the case of the RBF kernel, the underlying mapping

function actually maps the input vectors into an infinite dimensional space. Even

though LS-SVM with the RBF kernel has been commonly used for regression, there

are not sufficient studies on how to find a reasonable range for tuning the kernel
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parameter σ. Given two input vectors in the training dataset, x and z, the RBF kernel

function can be expressed as shown in Equation (5.1) (Suykens, Gestel, Brabanter,

Moor, and Vandewalle 2002).

K(x, z) = exp(−‖x − z‖2
2/σ

2). (5.1)

Let s = ‖x − z‖2, which is the Euclidean norm of the vector (x−z), and hence K(x, z)

= exp(−s2/σ2). For a given training dataset, the values of s are bounded in a specific

range for any possible combination of x and z values. Assume that the minimum

distance between two training instances is smin, and the maximum distance between

two training instances is smax. Figure 5.2 is a plot of the kernel function which shows

how K(x, z) decreases when s increases.
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Figure 5.2: RBF Kernel Function

In order to obtain a good regression model for the training dataset as described

in Equation (3.12), we propose that the range of s, which is [smin, smax], should be

located at a position where the slope of the kernel function is large. The reason for

this assumption is that we want to differentiate the instances as much as possible
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through using the kernel trick. By differentiating the training instances through the

kernel trick, the non-linear regression approach is able to capture more information

from the training dataset for modeling. On the other hand, if many training instances

are mapped to the flat part of the kernel function, K(x, z) will be a constant, which

will not be able to construct a reasonable regression model. Based on the observation

that the K(x, z) curve becomes flat when s is larger than 2σ, it is recommended to

bound s within 2σ. Thus, we have smax ≤ 2σ. It can be deduced that the slope of

the point at s = 0.0367σ is the same as the slope of the point at s = 2σ. Following

the same reasoning, we have smax ≥ 0.0367σ. Therefore, a heuristic value range for

the kernel parameter σ is shown in Equation (5.2).

smax

2
≤ σ ≤ smax

0.0367
. (5.2)

Meanwhile, through empirical studies, we observe that the value of the optimal kernel

parameter is usually closer to smax/2 than to its upper bound smax/0.0367. Therefore,

in the experiments, we select smax/2 as the initial value of σ, and then search for the

optimal value within the suggested range.

5.3 Selection of the Regularization Factor γ

The regularization Factor γ introduced in Equation (3.8) controls the trade-off be-

tween the training error minimization and the smoothness of the model. A larger

regularization factor gives more weights to the modeling error in solving the optimal

problem. In this case, the corresponding training error will be smaller, while the

smoothness of the model is lower. When the value of γ is too large, it leads to the
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overfitting problem. On the other hand, if the value of γ is too small, the model

will be smoother but it cannot fully capture the relationship between the inputs and

outputs in the training dataset, because the training errors are too large. Therefore,

it is important to select an appropriate value for γ, so that the estimated model will

not overfit the training dataset but being able to model the underlying function.

The problem is how to determine if the model is overfitting to the training dataset,

and when the training error is small enough. We do not expect the training error to

be zero or very close to zero, because that probably means the model is overfitting

to the training dataset. Here, we utilize Gamma test (Stefánsson, Koncar, and Jones

1997) to estimate the variance of the noise σ2
r . If the signal does not contain noise,

the component estimated by the Gamma test can also be considered as a part of

the signal that cannot be captured by regression modeling. A brief introduction

of the Gamma test is included in Appendix A. We compute leave-one-out (LOO)

error to estimate the training error σ2
t . Leave-one-out cross-validation (LOOCV)

involves using a single observation from the original sample as the validation data,

and the remaining observations as the training data. This is repeated such that

each observation in the sample is used once as the validation data. It can evaluate

the model more generally and avoid overfitting. If the LOO error is larger than

the variance of the noise, we increase the value of γ. Otherwise, the value of γ is

decreased. γ is updated according to Equation (5.3).

γ(i + 1) = γ(i) × σ2
t (i)

σ2
r

, (5.3)

where i is the index of the iterations. σ2
t (i) is the LOO error at the ith iteration.

According to Equation (3.8), γ is a weight coefficient of the squared training error.
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Therefore, a variance ratio-based updating strategy is suitable to quickly locate the

optimal value for γ. The searching process stops when the training error changes

within 5%. The selection of 5% is another attempt to avoid overfitting, which can be

adjusted if necessary. In this way, the trained model is not overfitted to the training

dataset, and is able to model the underlying function between the inputs and outputs.

The tuning process converges quickly because of utilizing the error feedback to adjust

the value of γ. As suggested in (Rubio, Pomares, Rojas, and Herrera 2011), the initial

value of γ, denoted as γ(1), is given by Equation (5.4).

γ(1) =
σ2

y

σ2
r

, (5.4)

where σ2
y is the variance of the output in the training dataset.

The pseudo-code of the algorithm is shown in Fig. 5.3. The inputs are the training

time series d and a set of values for σ within the range [smax/2, smax/0.0367], denoted

as SIGMA. The outputs of the tuning process are the σ and γ values corresponding

to the minimum LOO error. The processes of tuning σ and γ are intertwined, and

are based on the training dataset only. Line 1 calculates the variance of the training

time series and estimates the variance of the noise. Lines 2-3 initialize the variables

cost and gam. The for loop from line 4 to line 17 is to select a γ value for each value

of σ in SIGMA, according to Equation (5.3), and the initial value of γ is set to
σ2

y

σ2
r
.

In lines 8 and 13, leaveoneout( Training dataset, γ(i), σ2) is a function which takes

the training dataset as the input, uses γ(i) and σ2 as the hyper-parameters of the

LS-SVM method with the RBF kernel, and returns the LOO error. As stated in line

9, when the LOO error is 0, or the LOO error decreases less than 5% comparing to

the error measure from the previous iteration, the value of γ to pair with the given
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Figure 5.3: Pseudo-Code for Heuristic Parameter Tuning

σ is returned. In lines 18 and 19, the combination of the parameters which gives the

lowest LOO error among the paired parameters is returned as the output.

5.4 Comparative Analysis

In this section, we theoretically compare the proposed strategies with some existing

approaches: the LS-SVM approach with hyper-parameters tuned by the approach
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in (Lendasse, Ji, Reyhani, and Verleysen 2005) (denoted as LS-SVMNNE), the LS-

SVM approach with hyper-parameters tuned by the approach in (Rubio, Pomares, Ro-

jas, and Herrera 2011) (denoted as LS-SVMheu), and the LL-MIMO algorithm (Bon-

tempi 2008) (denoted as LL-MIMO).

LS-SVMNNE (Lendasse, Ji, Reyhani, and Verleysen 2005) and LS-SVMheu (Ru-

bio, Pomares, Rojas, and Herrera 2011) are both LS-SVM based approaches with

tuned hyper-parameters using different strategies. LS-SVMNNE keeps increasing the

value of γ by doubling its previous value until the training error does not exceed the

noise variance estimated by the nonparametric noise estimator (Lendasse, Ji, Rey-

hani, and Verleysen 2005). As analyzed earlier, a larger γ value leads to a smaller

training error. The training error could be smaller than the variance of the noise of

the outputs when the value of γ is large enough. However, LS-SVMNNE does not

provide the initial value for γ, and does not discuss the selection of the range for σ2,

while the prediction performance is closely related to these preset values. Meanwhile,

the strategy that increases the value of γ by doubling its previous value might not

be appropriate. Given an initial γ value, γ(1), let the number of iterations be m,

i.e., the searching is terminated after increasing the γ value m times. The updating

step size is increased after each iteration, and the maximum deviation of the selected

γ value from the true optimal γ value is 2m−1γ(1), which increases exponentially.

Therefore, the deviation from the optimal value can be very large when m is large.

The proposed variance ratio-based updating strategy, according to Equation (5.3), is

able to locate the optimal value for γ quickly. The number of iterations is expected

to be small, which will be validated through experiments. In addition, the updating

step size is decreased after each iteration, and it does not suffer from the problem
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that the returned value deviates from the optimal value significantly. The limitation

of the proposed strategy is that the estimated variance of the noise cannot be 0, i.e.,

the denominator in Equation (5.3) cannot be 0. This criterion is satisfied by most of

the time series.

LS-SVMheu recommends the minimum and maximum values of both γ and σ2,

while LS-SVMheu does not give a solution of finding the optimal values of these

parameters (Rubio, Pomares, Rojas, and Herrera 2011). For the regularization factor

γ, both the initial and maximum values are suggested to be the ratio of the variance of

the output to the estimated variance of the noise (Rubio, Pomares, Rojas, and Herrera

2011), and its minimum value is set to 1. However, there is no sufficient reasoning on

this selection of the range of γ. In addition, a fixed minimum γ value for all time series

is not preferable. The suggested range for σ is [smin, smax], where smin is the minimum

distance between two training instances and smax is the maximum distance between

two training instances. However, there is no theoretical basis for this selection. The

recommended range for σ by our strategy is [smax/2, smax/0.0367], which is based

on the property of the RBF kernel function. The descriptive comparison regarding

parameter tuning is summarized in Table 5.1.

LL-MIMO algorithm described in (Bontempi 2008) is a multi-input multi-output

local learning approach for long-term time series prediction. It is not an LS-SVM

related approach, so it does not have the hyper-parameters that need to be tuned.

LL-MIMO predicts the future multiple values as a whole simultaneously using a linear

combination. Comparing to the LS-SVM based approaches, LL-MIMO is weaker in

non-linear modeling.
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Table 5.1: Descriptive Comparison
Methods γ σ

LS-SVMNNE

Double the value of γ
until the training error
does not exceed the
noise variance.

N/A

LS-SVMheu
Recommended range:
[1, σ2

y/σ
2
r ].

Recommended range:
[smin, smax].

The proposed strate-
gies

Initial value is γ(1) =
σ2

y/σ
2
r , and the value

updates according to
γ(i + 1) = γ(i) ×
σ2

t (i)/σ
2
r .

Recommended range:
[smax/2, smax/0.0367].

5.5 Experiment and Results

In order to evaluate the performance of the proposed heuristic parameter tuning

method, we performed experiments on the framework shown in Fig. 5.4, which is

only part of the overall proposed framework for time-series prediction. The framework

shown in Fig. 5.4 takes the tuned parameters to the k-NN based LS-SVM method

for long-term time series prediction, and then returns the predicted values as the

output. A sliding window technique is applied to prepare the training and testing

instances. Three types of datasets are used in the experiments. Section 5.5.1 describes

the datasets used in the experiments and the measurement employed to evaluate the

performance. Comparisons with four approaches: LS-SVMNNE, LS-SVMheu, LL-

MIMO, and the LS-SVM approach with hyper-parameters tuned by the proposed

method (denoted as LS-SVM) are shown in Section 5.5.2. The proposed framework is

denoted as k-NN based LS-SVM. The experiments were conducted on an Intel Core

2 machine with two 2.66 GHz CPUs and 3.25 GB of RAM.
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Figure 5.4: Framework for Testing the Heuristic Parameter Tuning Component

5.5.1 Datasets and Error Measurement

Three types of datasets were used in the comparative experiments, including a time

series provided by NNGC1 competition, a chaotic laser time series, and a sunspot

area data time series provided by National Aeronautics and Space Administration

(NASA). The datasets exhibit diverse patterns. Experimental results on intrauterine

pressure time series will be shown in Chapter 6.

NNGC1 competition (Crone 2010) provided diverse non-stationary, heteroscedas-

tic transportation time series data with different structures and frequencies. The

datasets are frequently used in publications as well. The time series used in our ex-

periments is one of the longest series collected hourly. The length of the time series

is 1742. Figure 5.5 is a plot of a segment of the selected time series. It is observed

that the time series presents a nearly weekly repeated pattern with the variation in

the amplitude.
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Figure 5.5: A segment of the NNGC1 time series

The chaotic laser time series is a univariate time record of a single observed quan-

tity, measured in a physics laboratory experiment. It comprises measurements of the

intensity pulsations of a single-mode Far-Infrared-Laser NH3 in a chaotic state (Hueb-

ner, Abraham, and Weiss 1989). It has been used in the benchmarking studies after

the time series prediction competition organized by the Santa Fe Institute. The length

of the time series is 1000. Figure 5.6 is a plot of a segment of the chaotic laser time

series. The pattern of the chaotic laser time series is composed of gradual variations

and sudden changes.

The Royal Greenwich Observatory (RGO) (Hathaway 2011) compiled sunspot

observations from a small network of observatories to produce a dataset of daily

observations starting in May of 1874. Sunspots appear as dark spots on the surface

of the Sun. Sunspots are magnetic regions on the Sun with magnetic field strengths

thousands of times stronger than the Earth’s magnetic field. The time series used in
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Figure 5.6: A segment of the chaotic laser time series

the experiment contains the monthly averages of the daily sunspot areas in units of

millionths of a hemisphere. The length of the time series is 1639. Figure 5.7 is a plot

of a segment of the sunspot area time series. This time series contains much more

high frequency components comparing to the previous two time series datasets.

We employed root mean squared error (RMSE) metrics to evaluate the perfor-

mance of the prediction models. RMSE is the square root of the variance, which is

defined in Equation (3.20).

5.5.2 Experimental Results and Analysis

We compare the proposed framework with four methods, 1) the LS-SVM approach

with hyper-parameters tuned by the approach in (Lendasse, Ji, Reyhani, and Ver-

leysen 2005), 2) the LS-SVM approach with hyper-parameters tuned using the pa-

rameters selection strategy described in (Rubio, Pomares, Rojas, and Herrera 2011),
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Figure 5.7: A segment of the sunspot area data time series

3) the LL-MIMO algorithm (Bontempi 2008), and 4) the LS-SVM approach with

hyper-parameters tuned using the proposed method. Besides the hyper-parameters,

there are some other parameters need to be decided for the compared approaches.

Even though parameters like the length of the input vector (p) and the number of

neighbor points (k) can also influence the prediction performance, the study is mainly

focusing on the impact of the hyper-parameters on the prediction accuracy. In order

to provide more informative results to evaluate the effect of the proposed heuristic

parameter tuning for those hyper-parameters, we only presented results on one set

of pre-defined values for the prediction horizon (n), input vector (p), and number of

neighbor points (k) in this chapter. Considering the high complexity of the LS-SVM

approaches: LS-SVMNNE, LS-SVMheu and LS-SVM, we set the prediction horizon

n to 20 for all the comparative experiments. The length of the training time series

is set to 600, the length of the input vector p is set to 30. Parameter k in the k-NN
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approach is set to 80. Additional tuning process on these parameters will also help

to increase the prediction performance, particularly there are plenty of efforts on the

input selection, while it is beyond the scope of this study. We select the values of

these parameters based on our empirical study.

LS-SVMNNE, introduced in (Lendasse, Ji, Reyhani, and Verleysen 2005), employs

bisection method to search for the optimal γ for a given σ2, but the authors did not

provide the initial value for γ, and did not discuss the selection of the range for σ2.

In the experiments, we set the initial value of γ to 1, and the searching range of σ2

to [50, 500] with a step size at 50. LS-SVMheu presented in (Rubio, Pomares, Rojas,

and Herrera 2011) gives the minimum and maximum values of both γ and σ2, while

the authors did not give a solution of finding the optimal values of the parameters.

For the comparison purpose, the value of σ2 is set to the mid-point of the range

recommended, which was suggested by the experiments in (Rubio, Pomares, Rojas,

and Herrera 2011). The value of γ is set to the recommended initial value, because

the authors proved that the initial value is very close to the optimal value. LL-

MIMO algorithm described in (Bontempi 2008) is a multi-input multi-output local

learning approach for long-term time series prediction. It is not an LS-SVM related

approach, so it does not have the hyper-parameters that need to be tuned. LL-MIMO

predicts the future multiple values as a whole simultaneously. The comparison with

the LS-SVM approach with hyper-parameters tuned by the proposed method is also

included.

The comparison results and the tuned hyper-parameters of the NNGC1 time series

at prediction horizon n = 20 are reported in Table 5.2. There are 1123 testing

instances used in the experiments. For LL-MIMO approach, it does not have hyper-
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parameters, so its corresponding γ and σ2 values are not available, and are denoted

as N/A in the tables. As we could notice from Table 5.2, the proposed k-NN based

LS-SVM framework achieved a very low RMSE. Its performance is 61.05% higher

than LS-SVMheu, 43.52% higher than LL-MIMO, and 38.81% higher than LS-SVM

algorithm. To give a closer look, a part of the prediction results are shown in Fig. 5.8.

Because the space is limited, only 25 consecutive points are plotted to ensure the

quality of the figure. It can be observed that the predicted curve is very close to the

real time series. However, the results predicted by LS-SVMhue and LL-MIMO are

away from the real time series, especially when the curve is reaching the peaks.

Table 5.2: Prediction Results for NNGC1 Time Series
Methods RMSE γ σ2

LS-SVMNNE 1675.3 1024 450
LS-SVMheu 2687.2 11.8 23191.5
LL-MIMO 2394.7 N/A N/A
LS-SVM 2316.1 1106.8 22772.0

k-NN based LS-SVM 1668.5 1106.8 22772.0

Figure 5.9 shows the prediction errors of the compared five approaches. The

prediction error plotted is the difference between the predicted values and the real

values. Prediction errors of LS-SVMhue and LL-MIMO significantly deviate from 0.

Even though the tuned σ2 values for the proposed framework and LS-SVMheu are

close, the values of γ differ a lot. Based on the results, we can deduce that LS-SVMheu

is under-learning in this case, which means the selected γ value is too small for the

NNGC1 time series. For LS-SVM related approaches, it is possible to have multiple

local minima. The tuned hyper-parameters for LS-SVMNNE are very different from

that of the proposed framework, but their prediction performance is very close, even

though the prediction models are different. The results also show that by including
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Figure 5.8: Prediction Results for NNGC1 Time Series

the k-NN component, it significantly improves the prediction precision.

Table 5.3 shows the prediction results and the tuned hyper-parameters on the

chaotic laser time series at prediction horizon n = 20. There are 381 testing instances

used in the experiments. In this case, LS-SVMNNE returns a very large prediction

error comparing to other approaches, and the predicted curve is off the pattern for

some testing instances as it is shown in Fig. 5.10. The huge prediction errors from

these testing instances make the average RMSE a very large number. The selection

of σ2 is important. Using a fixed searching range for all the time series is not an ideal

approach. Although sometimes it might turn out to be a good prediction for some

time series, which is the case for the NNGC1 time series, it just happens coinciden-

tally. It is necessary to adjust the searching range according to the characteristics of

the given time series.
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Figure 5.9: Prediction Errors for NNGC1 Time Series

Table 5.3: Prediction Results for Chaotic Laser Time Series
Methods RMSE γ σ2

LS-SVMNNE 64.3 16384 50
LS-SVMheu 18.2 47.3 360.6
LL-MIMO 21.8 N/A N/A
LS-SVM 20.1 35148.9 1426.3

k-NN based LS-SVM 16.9 35148.9 1426.3

Both γ and σ2 values obtained by LS-SVMheu and the k-NN based LS-SVM

framework are quite different, but their RMSEs do not differ much. Again, it in-

dicates the existence of the multiple local minima. Another part of the prediction

result is shown in Fig. 5.11. The curve predicted by LS-SVMhue contains a constant

delay in this case, while the proposed approach is able to follow the changing pattern

well and almost overlaps the real time series. The prediction errors of the proposed

approach variate around 0 slightly as shown in Fig. 5.12. It has also shown a clear

improvement by the k-NN component comparing to the prediction result of LS-SVM
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Figure 5.10: Prediction Results for Chaotic Laser Time Series

method alone.

The analysis results on the sunspot area data time series at prediction horizon n =

20 are shown in Table 5.4. There are 1020 testing instances used in the experiments.

LL-MIMO does not preform as well for this time series with the highest RMSE,

while it is a simple and fast method for long-term time series prediction. LL-MIMO

approach selects k-NN of the testing instance from the training dataset, and calculates

the average outputs of the selected instances as the prediction results. When the time

series presents a more dynamic pattern, such as the case of the sunspot area data

time series, LL-MIMO is not able to learn the changing pattern. On the other hand,

the LS-SVM related approaches take the advantage of LS-SVM’s non-linear modeling

capability, and are able to conduct a better prediction. Figure 5.13 shows a part

of the prediction results, and Figure 5.14 is the corresponding prediction error plot.

The sunspot area data time series is the monthly averages of the daily sunspot areas.
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Figure 5.11: Prediction Results for Chaotic Laser Time Series

Its values change frequently at a fast pace. From the plot, we can observe that the

original signal contains some high frequency components. It is a very challenging task

to perform long-term time series prediction on this time series. The curve predicted

by the k-NN based LS-SVM approach is able to capture and follow the main trend

of the time series.

Table 5.4: Prediction Results for Sunspot Area Data Time Series
Methods RMSE γ σ2

LS-SVMNNE 754.3 8 50
LS-SVMheu 751.4 4.3 3956.4
LL-MIMO 773.2 N/A N/A
LS-SVM 736.6 10.0 3862.1

k-NN based LS-SVM 736.2 10.0 3862.1

The time consumption is shown in Table 5.5, which shows the average time it costs

to do n-step ahead prediction once. LS-SVMNNE, LS-SVMheu, and LS-SVM take a
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Figure 5.12: Prediction Errors for Chaotic Laser Time Series

longer time because of the high complexity of the LS-SVM model. Although including

the k-NN component does require some additional time before training the LS-SVM

regressors, the time cost is not comparable with the time needed for training the

LS-SVM regressors with the whole training dataset. The k-NN component reduces

the number of training instances significantly, and therefore dramatically reduces the

complexity and the time cost for training one LS-SVM regressor (even more saving

for n LS-SVM regressors). The proposed k-NN based LS-SVM approach is able to

achieve a smaller overall time cost than the compared LS-SVM based approaches. If

the dataset is large and n is large, the proposed framework will benefit even more from

the k-NN component. In order to achieve a better prediction result, the prediction

model is re-trained for every testing instance, so it takes a longer time than LL-

MIMO which does not have the training process. Overall, the proposed k-NN based
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Figure 5.13: Prediction Results for Sunspot Area Data Time Series

LS-SVM framework achieved the lowest prediction error, and it is much faster than

LS-SVMNNE, LS-SVMheu, and LS-SVM.

Table 5.5: Time Consumption
Methods Time Cost (s)

LS-SVMNNE 4.42
LS-SVMheu 4.85
LL-MIMO 0.01
LS-SVM 4.85

k-NN based LS-SVM 1.14

We conducted more experiments to demonstrate that the proposed strategy for

selecting γ is effective. Figure 5.15 to Fig. 5.17 show the prediction errors for a fixed

σ2 value with different γ values for all three time series. The σ2 values are set to

the tuned values for the three time series respectively, i.e., 22772.0 for NNGC1 time

series, 1426.3 for chaotic laser time series, and 3862.1 for sunspot area data time

series. The red dashed lines in the figures are pointing out the suggested values for



www.manaraa.com

101

20 40 60 80 100 120 140
−1500

−1000

−500

0

500

1000

1500

2000

Index

P
re

d
ic

ti
o

n
 e

rr
o

r

 

 

LS−SVMNNE

LS−SVMhue

LL−MIMO

LS−SVM

k−NN based LS−SVM

Figure 5.14: Prediction Errors for Sunspot Area Data Time Series

γ by the proposed framework. As it can be observed from the figures, the suggested

values are very close to the optimal values. Furthermore, the proposed strategy is

very efficient. The average number of the iterations for locating γ is 3 for NNGC1

time series, 2 for chaotic laser time series, and 1.86 for sunspot area data time series.

The overall average number of the iterations is 2.29. It is much more efficient than

the exhaustive grid search. Appropriately utilizing the information extracted from

the training time series enables us to tune the parameters efficiently and effectively.

It is true that both the parameter tuning strategy and the k-NN component can

be applied to other types of prediction tasks, for example, one-step ahead time series

prediction. However, we believe that the effects of the proposed parameter tuning

strategy and the k-NN component to the prediction performance will be more observ-

able and significant in the application of long-term time series prediction. The reason

is that for long-term time series prediction, the prediction needs to be done multiple
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Figure 5.15: Prediction Error for a Fixed σ2 with Different γ for NNGC1 Time Series

steps ahead, but the uncertainties of the future trend and the lack of information

make the prediction task very difficult. These challenges in turn imply more oppor-

tunities for the improvement. Therefore, the significance and merits of the proposed

parameter tuning strategy and the k-NN component can be better demonstrated.
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CHAPTER 6

Framework Evaluation

In this chapter, to demonstrate the merits of the proposed framework, we present the

experimental results on multiple de-identified labor tracings. On one hand, in order

to show the prediction ability of the proposed prediction model, we compare the out-

put from the k-NN based LS-SVM long-term time series prediction with four existing

methods, namely: LL-MIMO (Bontempi 2008), LS-SVM (Pelckmans, Suykens, Ges-

tel, Brabanter, Lukas, Moor, and Vandewalle 2003; Suykens, Gestel, Brabanter, Moor,

and Vandewalle 2002), AR (Soltani, Boichu, Simard, and Canu 2000), and autoregres-

sive moving average (ARMA) (Zhang 2003). The compared values are the outputs

from the prediction models without any adjustment by the post-prediction compo-

nents. The metrics used to evaluate the performance of the algorithms are RMSE,

SMAPE, and FIT (defined in Section 3.6). On the other hand, the purpose of the

proposed framework is to predict the starting points of the coming contractions, so

as to give the signal for analgesia injection ahead of time to relieve the labor pain.

Therefore, a criterion is proposed in Section 3.6 to evaluate the prediction accuracy

of the proposed framework.

104
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6.1 Dataset

We received de-identified pressure data files of 8460 women who gave birth between

April 2010 and September 2011. Each patient’s tracing is stored in a single file. In

each file, there is a matrix with interleaved rows representing intrauterine pressure

data and baby’s heart rate. Accordingly, the first cell of each row contains the day

and time information. The second cell specifies if the row contains ‘UA’ (uterine

activity) or ‘HR2’ (heart rate) data. The third cell specifies the type/method/status

of the measurement, such as ‘IUP’ for intrauterine pressure and ‘TOCO’ for external

uterine pressure. The remainder of the row, a total of 240 cells, contains the numerical

data corresponding to one-minute record. Because the data are sampled once each

1/4 second, there are 4 × 60 = 240 data points in one minute.

The uterine pressure signal collected externally is usually contaminated by lots of

noise. It is hard to recognize contractions from a noisy signal. In contrast, the ‘IUP’

signal is collected internally, which has a much clearer contraction pattern as com-

pared to the ‘TOCO’ signal. Therefore, we only consider ‘IUP’ signals at this stage.

The intrauterine pressure measure is an invasive measurement, and it can be applied

only after rupture of the membranes. Most of the files we received do not contain

‘IUP’ signals, because those data were collected externally using a tocodynamometer.

Out of the 8460 files, 2422 files contain ‘IUP’ signals, but some of them are shorter

than 30 minutes, which are too short for the useful analysis. We select 611 women’s

‘IUP’ tracings, together with their demographic and obstetrical information, to form

the historical patient information HI. We randomly select 11 patients’ records for

testing. The corresponding demographic and obstetrical information for each of the
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Table 6.1: Patient Demographic and Obstetrical Information for Testing

Patient ID
Indication for
Oxytocin

Gestational
Age (week)

Labor
Anesthesia

Maternal
Age (year)

1 Augmentation 40 Epidural 22

2 Augmentation 39 Epidural 18

3 N/A 41 Epidural 34

4 Augmentation 39 Epidural 23

5 Induction 38 Epidural 18
6 Induction 38 Epidural 18

7 Augmentation 38 Epidural 29
8 Augmentation 38 Epidural 34

9 Induction 38 Epidural 43
10 Augmentation 41 Epidural 27

11 Augmentation 35 Epidural 35

selected patients for testing is shown in Table 6.1. The selected tracings, either for

training or for testing, contain a sequence of recognizable peaks.

6.2 Experiment and Results

There are some parameters and thresholds that need to be determined for the com-

pared approaches. An intrauterine time series is subsampled once every second dur-

ing the data-preprocessing step, so the time interval of the preprocessed time series is

one second. The onset of the remifentanil’s effect is approximately 30 seconds, so the

prediction should be made approximately 30 seconds (adjustable according to the re-

quirement) ahead of the next contraction to accurately match the effect of analgesia.

Accordingly, we set the prediction horizon to 30. We present the results using one set

of pre-defined values for the length of the training time series (T length), the length

of input vector (p), and the number of neighbor points (k), which are shared by the

evaluated approaches. The training time series is the intrauterine pressure time series
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of the most recent 6 contractions, so the exact length of the training time series varies

from patient to patient, which depends on how long the most recent 6 contractions

last. The length of the input vector p is set to 5. Parameter k in the k-NN approach

is set to 80. An additional tuning process on these parameters will also help to in-

crease the prediction performance, particularly there are plenty of efforts on the input

selection, while it is beyond the scope of this study. We select the values of these

parameters based on our empirical study. In addition, we set minSupL, minSupG,

and minPS to 0.03, 0.1, and 0.01, respectively for the sequential association rule

mining process. These thresholds can be adjusted if we get more patient tracings

or a different set of patient tracings in the selected historical patient tracings HT .

Parameters γ and σ are obtained from the parameter tuning process as described in

Chapter 5.

The comparison results are shown in Table 6.2, Table 6.3, and Table 6.4 in terms

of RMSE, SMAPE, and FIT , respectively. As we can see from the results, the

proposed approach achieves the lowest prediction error in terms of both RMSE and

SMAPE. It also achieves the highest FIT measure. The experimental results show

that the proposed framework is superior to the compared four methods, on average

64.2%, 15.9%, 106.2%, and 51.3% better in terms of RMSE, and 100.5%, 36.2%,

163.5%, and 61.1% better in terms of SMAPE, than LL-MIMO, LS-SVM, AR, and

ARMA, respectively. The intrauterine pressure time series are rather dynamic and

complex, thus we do not expect the prediction error to be zero. When the prediction

significantly deviates from the true value, it is possible that the FIT measure is a

negative number according to its definition in Equation (3.22). As shown in Table 6.4,

the FIT measures of the prediction results of AR and ARMA are negative numbers
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Table 6.2: Experimental Results in Terms of Root Mean Squared Error
Patient ID LL-MIMO LS-SVM AR ARMA Proposed Framework

1 16.61 10.28 16.60 13.36 8.11

2 16.98 11.12 21.81 10.72 10.27

3 15.99 12.16 20.36 18.03 9.83

4 10.87 6.78 14.12 8.41 5.79

5 15.66 11.43 19.03 18.49 9.98

6 15.67 11.04 19.07 15.76 8.45

7 21.98 15.76 26.57 22.05 13.74

8 20.24 16.07 28.28 15.64 15.17

9 15.99 10.46 22.78 11.37 9.21

10 25.82 19.28 33.19 20.98 16.08

11 12.67 8.69 14.93 14.37 8.17

for some patients.

As analyzed in Chapter 2, not every model that works for short-term time series

prediction would work well for long-term prediction. The long-term time series pre-

diction is a much more challenging task due to the ever-changing labor contraction

pattern. LL-MIMO is a simple and low computational cost algorithm. It predicts the

future values by calculating the average of the training instances. LL-MIMO does

not train a model to describe the inherent relationship between inputs and outputs,

and its prediction ability is very limited as analyzed above.

The LS-SVM method gives fair prediction results, but it is computationally ex-

pensive due to using a large training dataset and complex computing. On average,

it takes 20.4 seconds to perform a single 30 seconds-ahead prediction using LS-SVM,

while it only takes 1.0 second for the proposed framework, which is about 19 times

faster than LS-SVM. Therefore, LS-SVM is not applicable for real-time prediction,

even though it gives better prediction than LL-MIMO.
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Table 6.3: Experimental Results in Terms of Symmetric Mean Absolute Percentage
Error

Patient ID LL-MIMO LS-SVM AR ARMA Proposed Framework
1 0.302 0.174 0.254 0.174 0.120

2 0.468 0.298 0.646 0.139 0.234

3 0.406 0.295 0.535 0.484 0.222

4 0.272 0.157 0.314 0.161 0.123

5 0.425 0.275 0.413 0.416 0.225

6 0.404 0.250 0.436 0.341 0.166

7 0.537 0.520 0.916 0.589 0.236

8 0.441 0.306 0.668 0.319 0.270

9 0.411 0.238 0.603 0.262 0.209

10 0.549 0.370 0.822 0.447 0.268

11 0.325 0.202 0.360 0.315 0.192

The autoregressive model is a linear prediction method that attempts to predict

the next value based on the previous observations. Because of its linear nature, it

is not able to achieve good prediction precision if the time series contains non-linear

components. In the case of long-term time series prediction, the mapping function

is usually non-linear. Therefore, the autoregressive model is not preferable. The

prediction errors of AR are usually the highest among the compared algorithms, and

the FIT measures are negative for most of patients.

Comparing to AR, ARMA includes a moving average part, which incorporates

the prediction error to build the prediction model. This makes ARMA more capable

and faster in following a time series trend. It can be also observed from Table 6.2,

Table 6.3 and Table 6.4 that ARMA always outperforms AR.

The proposed post-prediction process aims to further improve the prediction pre-

cision. It smoothes out the predicted curves and facilitates detecting starting points.

We include some plots of the predicted intrauterine pressure time series together with

the original tracings in Fig. 6.1 - Fig. 6.11 to demonstrate the prediction performance
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Table 6.4: Experimental Results in Terms of the FIT Measure
Patient ID LL-MIMO LS-SVM AR ARMA Proposed Framework

1 8.08 43.15 8.15 26.06 58.15

2 2.01 35.85 -25.86 38.12 42.72

3 4.77 27.60 -21.23 -7.38 46.07

4 6.47 41.66 -21.46 27.65 47.57

5 1.84 28.38 -19.26 -15.88 40.16

6 5.88 33.69 -14.52 5.37 53.78

7 8.23 34.19 -10.89 7.94 47.28

8 6.63 25.84 -30.50 27.83 40.16

9 9.68 40.92 -28.72 35.77 46.57

10 1.84 26.71 -26.14 20.26 41.39

11 6.70 36.00 -9.95 -5.78 46.46

of the complete proposed framework. The accuracy (defined in Section 3.6) for each

tracing is included in the title of the plot. It can be observed that the prediction is

able to anticipate and preserve the trend of the intrauterine pressure. High accuracies

demonstrate that the proposed framework is capable of predicting the start of the

upcoming contractions consistently.

In statistical test theory, two types of statistical errors are distinguished, type I

error and type II error. A type I error, also known as an error of the first kind, is

the wrong decision that is made when a test rejects a true null hypothesis (H0). A

type I error is also referred to as false positive in some test situations. In contraction

prediction, type I error is the wrong prediction of contraction that is made when there

is no upcoming contraction.

A type II error, also known as an error of the second kind, is a wrong decision

that is made when a test fails to reject a false null hypothesis. A type II error is also

referred to as false negative in some test situations. In contraction prediction, type

II error is when there is a forthcoming contraction, but the prediction model fails to
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Figure 6.1: Prediction Results for Patient 1 (Accuracy = 0.92)

anticipate it.

Both types of errors are unwanted. Based on the real-life consequences of an

error, one type may be more serious than the other. A type I error in contraction

prediction gives the parturient more amount of remifentanil than it is needed, while

a type II error causes no or insufficient remifentanil infusion. Because of the merits

of remifentanil (i.e., fast on, fast off, and almost none of it gets to baby, etc.), there

is no serious side effect if the parturient gets a few more boluses of remifentanil. On

the other hand, if there is no or insufficient remifentanil available when a contraction

occurs, the parturient will experience severe labor pain, which significantly lowers

the parturient’s satisfaction. Therefore, the type II error in contraction prediction is

more serious regarding the consequences.

As the results show in Fig. 6.1 - Fig. 6.11, the proposed prediction framework

did not fail to predict any contractions (i.e., there is no type II error), although it
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Figure 6.2: Prediction Results for Patient 2 (Accuracy = 0.91)

predicts a few extra contractions (i.e., type I errors, which are tolerable) as can be

seen in Fig. 6.7 and Fig. 6.10. In real applications, patient-controlled analgesia (PCA)

with remifentanil can be incorporated in order to decrease the risk of type II errors.

If the parturient needs more analgesia than the recommended dosing regimen based

on the contraction prediction, she can start or increase a remifentanil bolus at the

first subjective sign of an upcoming uterine contraction. Meanwhile, the PCA device

should be well-programmed to make sure that the parturient will not overdose.
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Figure 6.3: Prediction Results for Patient 3 (Accuracy = 0.83)
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Figure 6.4: Prediction Results for Patient 4 (Accuracy = 0.83)
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Figure 6.5: Prediction Results for Patient 5 (Accuracy = 0.86)
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Figure 6.6: Prediction Results for Patient 6 (Accuracy = 0.78)
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Figure 6.7: Prediction Results for Patient 7 (Accuracy = 0.80)
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Figure 6.8: Prediction Results for Patient 8 (Accuracy = 0.86)
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Figure 6.9: Prediction Results for Patient 9 (Accuracy = 0.95)
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Figure 6.10: Prediction Results for Patient 10 (Accuracy = 0.76)
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Figure 6.11: Prediction Results for Patient 11 (Accuracy = 0.7)
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CHAPTER 7

Conclusion and Future Work

In Chapter 1 and Chapter 2, the background of this work and the related state-

of-art research are discussed. In the next four chapters, the proposed system is

presented in detail, and the performance analysis is provided. In this concluding

chapter, a summary of the contributions of the proposed system is given, followed by

the discussion of the future research directions.

7.1 Conclusion

Designing an optimal dosing regimen for remifentanil necessitates the prediction of

the pace of contractions, so that the drug can be given shortly before the pain caused

by a contraction begins. Meanwhile, the prediction should be made early enough to

allow for an administration of remifentanil that will have maximal efficacy during

contractions, little effect between contractions, and minimal impact on the fetus. In

this dissertation, we introduce the novel knowledge-assisted sequential pattern anal-

ysis framework to tackle the difficult task of predicting the timing of the upcoming

labor contractions. The framework reveals interesting sequential patterns in the in-

118
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trauterine pressure sequences, which we employ to assist contraction prediction using

the sequential association rule-based collaborative filtering strategy.

• The five-step framework is introduced in this dissertation. The steps are 1) pa-

tient selection, 2) collaborative training dataset selection, 3) heuristic parameter

tuning for LS-SVM, 4) k-NN based LS-SVM for long-term time series predic-

tion, and 5) the post-prediction process, which includes boundary constraint,

multi-value integration and vertical correction components.

• The contraction pattern is defined by the combination of the height of the peak

that represents the contraction and the period of the contraction. A new se-

quential association rule mining approach is designed to discover the sequential

uterine contraction pattern. Sequential pattern analysis on intrauterine pres-

sure tracings provides a way to characterize the pattern of contractions. This

enables analysis on whether and how the demographic and obstetrical features

impact the sequential uterine contraction pattern. The analysis allows us to

group the patients based on some selected demographic and obstetrical features

that impact the sequential uterine contraction pattern.

• A new sequential association rule-based dataset selection method with a col-

laborative filtering strategy is then proposed to dynamically select the training

dataset from the patient intrauterine pressure database and the current pa-

tient’s own past tracing. The collaborative filtering component uses the known

sequential contraction patterns of a group of past patients to assist in the pre-

diction of unknown upcoming contractions for the current patient of interest.

We selectively employ available contractions from both the selected historical
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patient tracings and the current patient’s most recent intrauterine pressure trac-

ing to train the prediction models. This dynamic selection makes the prediction

models adaptive to the changing contraction pattern of the patient.

• A novel heuristic method is proposed to decide the search interval of the Gaus-

sian kernel parameter based on the information extracted from the training time

series. A strategy for efficiently locating the regularization factor is also pro-

posed. The parameter tuning process guarantees that the proposed k-NN based

LS-SVM framework is able to reach its best performance. In the k-NN based

LS-SVM framework, the k-NN component reduces the complexity of training

the LS-SVM, and also improves the prediction accuracy. We design a new dis-

tance function, which incorporates the Euclidean distance and the dissimilarity

of the trend of a time series for the k-NN method. The promising experimental

results validate the effectiveness and efficiency of the tuning strategy and the

modeling for long-term time series prediction.

• The post-prediction process enhances the correctness and smoothness of the pre-

dicted results. The boundary constraint component sets a dynamic constraint

for the predicted values to make sure that the results are valid in the appli-

cation domain. The multi-value integration component combines prediction

results from several individual models to generate an output, which decreases

the uncertainty of the prediction model. The vertical correction component

detects and smoothes out the irregular sharp pulses and peaks with very low

heights in the prediction results, and generates the final output of the proposed

framework.
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This dissertation provides a solution for predicting upcoming uterine contractions

for women in labor. Prediction accuracy is essential in order to maximize the effect

and minimize the side effect profile of remifentanil. The experimental results have

shown that the proposed framework outperforms some existing methods in many

aspects. Designing the optimum dosing regimen also requires studies on predicting

the intensity of upcoming contractions and on the pharmacodynamics of remifentanil,

so that we will be able to indicate when and how much remifentanil to inject to relieve

a patient’s labor pain. Ultimately, success depends on accurate predictions in order

to administer an appropriate amount of remifentanil at the appropriate time, thus

enhancing current pain management techniques and improving safety for mothers and

babies.

7.2 Future Research Direction

We have seen some encouraging results of the proposed knowledge-assisted sequential

pattern prediction framework. The following topics are some interesting extensions

of the proposed framework.

1. Design a system for remifentanil infusion with optimum dosing regimen.

In order to design a system for remifentanil infusion with optimum dosing reg-

imen, there are four major components we need to accomplish as shown in

Fig. 7.1. Each of the components represents a particular task. The tasks are 1)

predicting the timing of the upcoming contraction, 2) predicting the intensity of

the upcoming contraction, 3) analyzing the pharmacodynamics of remifentanil,
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and 4) designing a device for remifentanil infusion, which takes the informa-

tion provided by the first three components and interacts with patients and

anesthetists.

Figure 7.1: Systematic View

The focus of this dissertation is on the first task. We give the prediction of

the timing of the upcoming contraction multiple seconds ahead. It also ensures

that there is enough time to inject remifentanil and let remifentanil reach the

peak of its effect to relieve the pain caused by the upcoming contraction. The

prediction of the upcoming contraction helps to determine when remifentanil

should be injected. The timing of the injection is also related to how fast

remifentanil reaches the peak of the effect after injection, which relates to the

pharmacodynamics of remifentanil.

The intensity of a contraction can be described by the height of the peak that

represents the contraction. The prediction of the intensity of the upcoming
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contraction should be also made at the time when we predict the starting point

of a contraction. Usually, after a contraction initiates, it takes approximately

30 seconds to reach the peak of the contraction. Thus, if we predict the starting

point and the intensity of a contraction at the same time, it means that the

prediction horizon for predicting the intensity is 30 seconds higher than it is for

predicting the starting point. It is a more challenging long-term prediction task.

One solution is to use the framework presented in this dissertation, and set a

higher prediction horizon, i.e., 60 (=30+30) seconds, and return the height of

the peak as the indication of the intensity. However, predicting the intrauterine

pressure time series 60 seconds in advance is very difficult, and the predicted

height might not be very accurate. Another solution could be that for a sequence

of contractions, we extract the height feature for each contraction, analyze the

sequence of the height feature, and try to conduct prediction on the height of

the upcoming contraction directly.

Pharmacodynamics is the study of the biochemical and physiological effects of

drugs on the body or on microorganisms or parasites within, the mechanisms

of drug action, and the relationship between drug concentration and effect. Re-

search should be conducted to find out when and how much remifentanil should

be administered to patients in labor in order to relieve the pain caused by one

contraction. Patients’ demographic information probably also plays a role in

determining these parameters. For example, a patient with larger BMI would

need a larger dose to reach the same drug concentration and effect.
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Timing and intensity of the upcoming contraction together with pharmaco-

dynamics of remifentanil as a whole determine the timing and dosage of the

remifentanil infusion. An infusion device, which takes the information provided

by the first three components as the input, should be designed to inject remifen-

tanil to patients according to the given command of timing and dosage. In

addition, the infusion device should be able to interact with patients and anes-

thetists. For example, if the patient still feels much pain when she is receiving

the timely infusion of remifentanil, she should be able to manually increase

the rate of the infusion. Thus, the infusion device also takes the patient’s or

anesthetist’s feedback as additional input to adjust the infusion rate.

2. Incorporate more detailed patient demographic and obstetrical information to

the framework.

This dissertation suggests a way to utilize the patient demographic and ob-

stetrical information to assist the prediction task. More statistic studies on

the relationship between demographic information and the contraction pattern

could be conducted.

In the proposed framework, we use the indication of oxytocin as one of the

features to select the patients for the training purpose. We first determine

which group the current patient should belong to according to her gestational

age, labor anesthesia, and indication of oxytocin using the tree shown in Fig. 7.2.

Let the current patient belong to group i, where 1 ≤ i ≤ 7. Second, select

nPatient patients from group i whose age are closest to the current patient’s

age. The selected patients’ intrauterine tracings are the output of the patient



www.manaraa.com

125

selection component, and are passed to collaborative training dataset selection

component as one of its inputs.

Figure 7.2: A Tree for Patient Selection

In the current framework, every segment of one intrauterine tracing is considered

as equal, and become potential training dataset once the patient is selected. For

those patients whose indication of oxytocin is ‘Induction’, we could employ the

indication for oxytocin as a time series input to divide the intrauterine tracings.

The speed of oxytocin flow injected to the patients is changing throughout the

labor precess. We could further divide the intrauterine pressure time series into

segments according to the rate of oxytocin infusion.

Table 7.1 gives an example of the indication of oxytocin record for one pa-

tient. According to the record, pitocin (oxytocin injection) started at 09:25:00
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Table 7.1: The Indication of Oxytocin Record for One Patient
03/01/11 09:25:00 Pitocin Started milliunits/min @ 1
03/01/11 10:10:00 Pitocin Increased milliunits/min @ 2
03/01/11 11:10:00 Pitocin Increased milliunits/min @ 4
03/01/11 11:40:00 Pitocin Increased milliunits/min @ 6
03/01/11 12:10:00 Pitocin Increased milliunits/min @ 8
03/01/11 12:40:00 Pitocin Increased milliunits/min @ 10
03/01/11 13:10:00 Pitocin Increased milliunits/min @ 12
03/01/11 13:40:00 Pitocin Increased milliunits/min @ 14
03/01/11 14:30:00 Pitocin Increased milliunits/min @ 16
03/01/11 15:00:00 Pitocin Increased milliunits/min @ 18
03/01/11 15:32:00 Pitocin Increased milliunits/min @ 20 MU/MIN
03/01/11 15:44:00 Pit D/C
03/01/11 15:44:00 Pit D/C

at 1 MU/MIN (milliunits per minute). The rate increased to 2 MU/MIN at

10:10:00. The oxytocin injection was disconnected at 15:44:00. Oxytocin is

the major hormone that stimulates the contraction of smooth muscle of the

uterus during labor. It speeds up labor contractions and delivery. We pro-

pose that the training dataset selection could be better if we also classify the

segments of intrauterine tracing according to the amount of oxytocin that the

patients were having. In the given example in Table 7.1, we can retrieve 13

segments which were collected before 09:25:00, [09:25:00 - 10:10:00], [10:10:00

- 11:10:00], [11:10:00 - 11:40:00], [11:40:00 - 12:10:00], [12:10:00 - 12:40:00],

[12:40:00 - 13:10:00], [13:10:00 - 13:40:00], [13:40:00 - 14:30:00], [14:30:00 -

15:00:00], [15:00:00 - 15:32:00], [15:32:00 - 15:44:00] and after 15:44:00, respec-

tively. Each segment is marked by the corresponding oxytocin injection rate.

If the current patient of interest is having oxytocin injection 2 MU/MIN, than

the segment collected in [10:10:00 - 11:10:00] should be considered for the train-
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ing instance selection. Currently, the record of the oxytocin infusion is not

complete and sometimes contains error. We can have this information fully

documented correctly and use it for finer training dataset selection.

3. Enhance the discretization method.

The discretization method introduced in Section 4.1, which is used for convert-

ing numerical features to nominal features, directly influences the sequential

pattern discovered by the sequential association rule mining algorithm. How

to choose the intervals for discretization is crucial. The discretized intervals

should not hide the patterns, thus the intervals should not be either too big or

too small. Meanwhile, the intervals should be semantically meaningful.

Discretization is more often discussed in the supervised classification domain. In

our task, it requires an unsupervised discretization method, because there is no

class concept and accordingly, and there is no prior knowledge about the class

information. Existing unsupervised discretization methods include equal width

partitioning, equal frequency partitioning, and k-means based discretization.

For equal width partitioning, the size of each interval is the same. For equal

frequency partitioning, the number of the instances in each partition is the same.

k-means based discretization divides the partitions using the k-means clustering

method, which groups the instances that are close to each other in one partition.

The number of instances in each group varies. All these existing unsupervised

discretization methods do not take the data distribution into consideration. We

extract two features from intrauterine pressure tracings, i.e., height and period.

The 2-D distribution of height and period is shown in Fig. 7.3 .
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Figure 7.3: Distribution

It is observed that the distribution of the instances is not uniform. A dis-

cretization method that considers the 2-D density information is probably more

suitable for sequential association rule mining than equal width partitioning.

First, normalized both height and period according to Equation (7.1) and Equa-

tion (7.2).

h =
height − minHeight

maxHeight − minHeight
, (7.1)

p =
period − minPeriod

maxPeriod − minPeriod
, (7.2)

where maxHeight and minHeight are the maximum and minimum values of

the height; maxPeriod and minPeriod are the maximum and minimum values

of the period. Given a point (h, p), if we consider the area with radius r centered

on (h, p), a kernel density function is proposed in Equation (7.3).

dens =
1

πr2

n
∑

i=1

K(
(h, p) − (hi, pi)

r
), (7.3)
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where K(·) is a kernel function which assigns a weight to the point (hi, pi)

within the area depending on its distance from (h, p). The points that are

closer to (h, p) are assigned larger weights. Different types of the kernel func-

tion such as linear kernel, polynomial kernel, radial basis function kernel, and

multilayer perceptron kernel can be investigated. Based on the obtained density

of each point, we can divide the domain into consecutive blocks, which satisfy

the condition that the sum of the density of each point in the block equals to a

preset threshold.

4. Analyze signals in addition to IUP.

The intrauterine catheter is not available in some developing countries, where

an automatic anesthesia equipment is needed the most due to the shortage of

experienced anesthetists. Therefore, the next step of this work should include

designing a more advanced noise filtering or signal recovering technique to rec-

ognize contractions from signals obtained by external measurement, such as

tocodynamometer, so as to enable further analysis.

As an alternative and based on literature review, we know that the uterine con-

traction is directly related to the electrical activities in the myometrial cells.

Uterine EMG signals represent electrical activities, which as a whole trigger

uterine contractions. As discussed earlier, a single spike is not enough to main-

tain a forceful contraction. Therefore, if only a single spike is detected in an

EMG signal, the spike should be considered as noise. On the other hand, if

multiple, high-frequency, and coordinated spikes are detected, a contraction is

probably occurring. Compared to the IUPC signal, the EMG signal contains
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more frequency information, and it could be analyzed in the frequency domain.

In this case, there are a number of sophisticated mathematical methods (power

spectrum, wavelets, fractals, and artificial neural networks, to name a few) that

could be used to determine the extent of electrochemical preparedness of the

myometrium for labor and subsequent delivery. To start the analysis, a fast

Fourier transform (FFT) can be used to obtain the frequency spectrum of the

EMG signal. Figure 7.4 shows an example.
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Figure 7.4: Frequency Spectrum

The peaks in the frequency spectrum represent the frequencies with strong in-

tensity. We select N major frequencies from the peaks wk, where k = 1, · · · , N .

The original signal y(t) can be approximated by the selected frequencies accord-

ing to Equation (7.4).

ỹ(t) = a0 +

N
∑

k=1

ak sin(wkt + ϕk), (7.4)
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where ỹ(t) is the reconstructed signal, and a0, ak and ϕk are parameters needed

to be obtained through modeling. Equation (7.4) can be rewritten in the fol-

lowing form.

ỹ(t) = a0 +
N

∑

k=1

[ak,1 sin(wkt) + ak,2 cos(wkt)] = θT x(t), (7.5)

where ak,1 and ak,2 are coefficients, θT = [a0, a1,1, a1,2, · · · , ak,1, ak,2, · · · , aN,1, aN,2],

and

x(t) =






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.

We can use the least squares algorithm to obtain the optimum θ. Further anal-

ysis and prediction can be done based on the obtained model in the frequency

domain. Besides using the EMG signals, we could also explore if there are any

other alternative methods that could monitor the electrical activities. Under-

standing these methods is important to build a good predictor, given that the

electrical activity is a crucial factor that causes the uterine contractions.
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Gamma Test

Gamma test (Stefánsson, Koncar, and Jones 1997) is a nonparametric noise estima-

tion technique which estimates the variance of the noise. Gamma test was introduced

for model selection and also for input selection (Rubio, Pomares, Rojas, and Her-

rera 2011; Sorjamaa, Hao, Reyhani, Ji, and Lendasse 2007), while it is employed in

our framework on the purpose of parameters selection. Gamma test is based on the

assumption that if two points are very close in the input space, the corresponding

output should be close enough. Otherwise, the deviation is caused by noise.

Given M data instances: {(x1, y1), (x2, y2), . . . , (xM , yM)}, where x ∈ R
p and y ∈

R. The relationship between the input and the output can be formulated as in

Equation (A.1).

yi = f(xi) + ri, i ∈ [1, M ] (A.1)

where f is the underlying function which captures the relationship between xi and yi.

ri is the noise for the ith data instance. We can assume that the mean of r is zero,

because any bias can be considered as a part of the underlying function f . Gamma

test is used to estimate the variance of r, denoted as σ2
r .

132
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Gamma test estimates the variance σ2
r by calculating the vertical intercept of the

linear regression line: η(k) = Aδ(k) + B, 1 ≤ k ≤ p, where A is the slope parameter

and B is the vertical intercept. p is usually set to 10. η(k) and δ(k) are defined in

Equation (A.2) and Equation (A.3), respectively.

η(k) =
1

2M

M
∑

i=1

(y[i,k] − yi)
2; (A.2)

δ(k) =
1

M

M
∑

i=1

∣

∣x[i,k] − xi

∣

∣

2
, (A.3)

where x[i,k] is the kth nearest neighbor of xi, and y[i,k] is the output value corresponding

to x[i,k]. Compute the regression line of the p points (δ(k), η(k)), 1 ≤ k ≤ p. σ2
r is

estimated by the vertical intercept B of the regression line. When the number of the

data instances is large enough, B is a reliable estimation of the variance.
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Glossary

Agonist A substance interacting with a receptor molecule that initiates the same

response as the hormone/transmitter usually binds to that site.

ARM Association rule mining.

BMI Body mass index.

CA Correspondence analysis.

CF Collaborative filtering.

ECG Electrocardiography.

EMG Electromyography, a technique for evaluating and recording the electrical ac-

tivity produced by skeletal muscles. EMG is performed using an instrument

called an electromyograph, to produce a record called an electromyogram. An

electromyograph detects the electrical potential generated by muscle cells when

these cells are electrically or neurologically activated.

γ Regularization parameter for LS-SVM, which controls the trade-off between the

training error minimization and the smoothness of the model.
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Gap junctions Gap junctions are formed from bundles of proteins, called connexins,

which align forming symmetrical channels protruding through adjacent cells and

thus allowing contact and communication (Coad and Dunstall 2001).

KDD Knowledge discovery in databases.

k-NN k-nearest neighbors.

LOOCV Leave-one-out cross-validation, a technique that involves using a single

observation from the original sample as the validation data, and the remaining

observations as the training data.

LS-SVM Least squares support vector machines.

MCA Multiple correspondence analysis.

MLP Multilayer perception.

Myometrium The myometrium is the middle layer of the uterine wall, consisting

mainly of uterine smooth muscle cells, but also of supporting stromal and vas-

cular tissue. Its main function is to induce uterine contractions.

Overfitting When an algorithm searches for the best parameters for one particular

model using a set of training data, it can model not only the general patterns

in the data but also any noise specific to the training data set, resulting in poor

performance of the model on testing data. This issue is called overfitting. Pos-

sible solutions include cross-validation, regularization, and other sophisticated

statistical strategies.

PCA Patient-controlled analgesia.
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RBF kernel Radial basis function kernel.

RMSE Root mean squared error.

σ The bandwidth for the RBF kernel.

SMAPE Symmetric mean absolute percentage error.

TOCO Tocodynamometer.
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